Презентация на тему "Свойства полимеров"

Презентация: Свойства полимеров
Включить эффекты
1 из 14
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Свойства полимеров" по химии. Презентация состоит из 14 слайдов. Материал добавлен в 2016 году. Средняя оценка: 3.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 14.51 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    14
  • Слова
    химия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Свойства полимеров
    Слайд 1

    Свойства полимеров

  • Слайд 2

    Широким применением полимеры обязаны своим свойствам, важнейшими из них являются способность к образованию анизотропных высокоориентированных волокон и пленок, отличающихся высокой прочностью.

  • Слайд 3

    Для линейных полимеров характерен ряд специфических комплексных физико-химических и механических свойств. За счет своей высокой молекулярной массы линейные полимеры склонны к большим, имеющим длительное развитие, обратимым деформациям. Эти полимеры, находясь в высокоэластичном состоянии, способны набухать, прежде, чем раствориться..

  • Слайд 4

    Линейные полимеры характеризуются высокой вязкостью растворов. Эти свойства выражены в значительной мере меньше у полимеров с разветвлениями, трехмерными сетками и густыми сетчатыми структурами. Полимеры, сильно сшитые, не обладают растворимостью, не плавятся и не склонны к высокоэластичным деформациям.

  • Слайд 5

    Полимерам свойственны, как аморфные, так и кристаллические состояния. Для кристаллических полимеров необходимо наличие в их структуре регулярных, достаточно длинных участков макромолекул. Кристаллические полимеры часто являются местом зарождения разнообразных надмолекулярных структур, к примеру, фибрилл, сферолитов, монокристаллов и т.д

  • Слайд 6

    Типы этих структур в значительной мере влияют на свойства полимерного материала. Не закристаллизованные полимеры реже образуют надмолекулярные структуры и могут находиться в трех физических состояниях: стеклообразном, вязко текучем и высокоэластическом. Эластомеры, полимеры, способны переходить из стеклообразного в высокоэластическое состояние при низкой температуре. Пластики, наоборот, для этого требуют высокой температуры.

  • Слайд 7

    Свойства полимеров очень разнообразны и варьируются в зависимости от их химического состава, строения молекул и их взаимного расположения. Примерами могут служить 1.4-цис-полибутадиен, состоящий из углеводородных цепей с характерной гибкостью. Он является эластичным материалом при температуре 20 градусов по Цельсию, а при нагревании до 60 градусов переходит в стеклообразное состояние, и полиметилметакрилат, состоящий из достаточно жестких цепей, при 20 градусах являющийся твердым, стеклообразным продуктом, и лишь при 100 градусах переходящий в высокоэластичное состояние.

  • Слайд 8

    Целлюлоза также состоит из более жестких цепей, которые соединяются между собой водородными связями. Она не существует в высокоэластичном состоянии, пока не достигнута температура ее разложения. Даже при небольших отличиях в строении макромолекул наблюдаются большие отличия в свойствах полимеров.

  • Слайд 9

    Например, стереорегулярный полистирол сохраняет свое кристаллическое состояние до температуры плавления, около 235 градусов, а нестереорегулярный, так называемый атактический, полистирол не склонен к кристаллизации, и при температуре около 80 градусов размягчается.

  • Слайд 10

    Полимерам свойственны следующие типы реакций: между макромолекулами в составе полимеров может происходить сшивание. Этот процесс можно наблюдать при вулканизации каучуков и в процессе дубления кожи. Молекулы полимеров могут распадаться на более короткие по размерам фрагменты. В боковых функциональных группах полимеров с низкомолекулярными веществами также образуются реакции, но они не затрагивают основную цепь. Такие превращения называют полимераналогичные. 

  • Слайд 11

    Кроме того, полимерам свойственны реакции внутри макромолекул между их функциональными группами. Примером является циклизация внутри молекул. Вышеупомянутое сшивание макромолекул зачастую сопровождается деструкцией. В качестве примера можно назвать получение поливинилового спирта, в основе которого лежит омыление поливинилацетата.

  • Слайд 12

    Полимеры вступают в реакции с низкомолекулярными веществами, их скорость ограничена скоростью диффузии низкомолекулярных веществ в фазу. Часто этот процесс наблюдается у сшитых полимеров. Кроме того, на скорость взаимодействия макромолекул в составе полимеров с низкомолекулярными веществами напрямую влияет природа и расположение соседних звеньев по отношению к реагирующему звену. Это же характерно и для внутримолекулярных реакций между функциональными группами в составе одной цепи макромолекул.

  • Слайд 13

    На некоторые свойства полимеров, такие, как стабильность, способность к вязкому течению и растворимость, можно легко влиять при помощи добавления примесей и добавок в небольшом количестве. Они вступают в реакции с макромолекулами, что меняет свойства полимеров. Например, линейные полимеры делают полностью нерастворимыми, добавив на 1 макромолекулу 1-2 поперечные связи.

  • Слайд 14

    Таким образом, важнейшими характеристиками полимеров являются их химический состав, распределение молекулярной массы и сама молекулярная масса макромолекул, а также степень их разветвленности и гибкости и стереорегулярность. Именно от этих свойств в значительной мере зависят характеристики полимеров.

Посмотреть все слайды

Сообщить об ошибке