Презентация на тему "Водород"

Презентация: Водород
1 из 20
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн на тему "Водород" по химии. Презентация состоит из 20 слайдов. Материал добавлен в 2016 году. Средняя оценка: 3.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.46 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    20
  • Слова
    химия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Водород
    Слайд 1

    Водород pptcloud.ru

  • Слайд 2

    Водород самый распространенный элемент во вселенной

  • Слайд 3

    История открытия

    Впервые этот газ в чистом виде выделил 240 лет назад английский химик Генри Кавендиш. Свойства полученного им газа были настолько удивительны, что ученый принял его за легендарный «флогистон», «теплород» — вещество, по канонам науки того времени определявшее температуру тел. Он прекрасно горел (а огонь считался почти чистым флогистоном), был необычайно легок, в 15 раз легче воздуха, хорошо впитывался металлами и так далее.

  • Слайд 4

    Другой великий химик, француз Антуан-Лоран Лавуазье, уже в 1787 году доказал, что полученное Кавендишем вещество — вполне обычный, хотя и очень интересный химический элемент. Свое название он получил оттого, что при горении давал не дым, сажу и копоть, а воду.

  • Слайд 5

    Общая характеристика:

    Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома окружено электронным облаком. Электронная конфигурация 1s1. В одних условиях водород проявляет металлические свойства (отдает электрон), в других — неметаллические (принимает электрон). Однако по свойствам он более сходен с галогенами, чем со щелочными металлами. Поэтому водород помещают в VII группу периодической системы элементов Д.И. Менделеева, а в I группе символ водорода заключают в скобки.

  • Слайд 6
  • Слайд 7

    Водород в природе:

    Водород широко распространен в природе — содержится в воде, во всех органических соединениях, в свободном виде — в некоторых природных газах. Содержание его в земной коре достигает 0,15% ее массы (с учетом гидросферы — 1%). Водород составляет половину массы Солнца.

  • Слайд 8

    Каждую секунду Солнце излучает в космическое пространство энергию, эквивалентную примерно 4 млн т массы. Эта энергия рождается в ходе слияния четырех ядер водорода, протонов, в ядро гелия;

  • Слайд 9

    За время существования Солнца уже около половины водорода в его центральной области превратилось в гелий и вероятно ещё  через 5 млрд. лет, когда в центре светила водород  будет  на  исходе, Солнце ( жёлтый карлик в настоящее время)  увеличится в размерах и станет красным гигантом. 

  • Слайд 10

    Молекула водорода

    Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщенной пары электронов (или общего электронного облака): Н:Н или Н2 Благодаря этому обобщению электронов молекула Н2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н2 = 2Н, ∆H° = 436 кДж/моль Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.

  • Слайд 11

    Физические свойства.

    Водород — это самый легкий газ (он в 14,4 раза легче воздуха), не имеет цвета, вкуса и запаха. Мало растворим в воде (в 1 л воды при 20°С растворяется 18 мл водорода). При температуре — 252,8°С и атмосферном давлении переходит в жидкое состояние. Жидкий водород бесцветен. Кроме водорода с массовым числом 1 существуют изотопы с массовыми числами 2 и 3 — дейтерий D и тритий Т. Газообразный водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода (т. пл. -259,20 °С, т. кип. -252,76 °С) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. -259,32 °С, т. кип. -252,89 °С) — противоположно друг другу (антипараллельны).

  • Слайд 12

    Химические свойства

  • Слайд 13

    Получение:

    Вплоть до конца XIX века получение водорода было делом достаточно хлопотным. Добывали его в мизерных количествах, растворяя обычные металлы в кислотах, а также щелочные и щелочноземельные в воде. Только после того, как электричество начали производить в промышленных масштабах, появилась возможность относительно легко добывать его тоннами с помощью электролиза. Выглядит электролитический процесс примерно так: в ванну с водой опускают два электрода, на одном — положительный потенциал, на другом — отрицательный. На плюсе в результате прохождения тока выделяется кислород, а на минусе — водород.

  • Слайд 14

    Эксперимент по получению водорода из воды с помощью солнечной энергии

  • Слайд 15

    Применение:

    Наработав в достаточном количестве этот легкий газ, люди сначала приспособили его для воздушных полетов. В этом качестве первый элемент Таблицы Менделеева применяли вплоть до 1937 года, когда в воздухе сгорел крупнейший в мире, в два футбольных поля размером, заполненный водородом немецкий дирижабль «Гинденбург». Катастрофа унесла жизни 36 человек, и на таком использовании водорода был поставлен крест. С тех пор аэростаты заправляют исключительно гелием. Гелий — газ, увы, более плотный, но зато негорючий. .

  • Слайд 16

    Водородная энергетика

    В недалёком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды.

  • Слайд 17

    Водородные автомобили

    В 1979 году компания BMW выпустила первый автомобиль, вполне успешно ездивший на водороде, при этом не взрывавшийся и выпускавший из выхлопной трубы водяной пар. В эпоху усиливающейся борьбы с вредными выхлопами машина была воспринята как вызов консервативному автомобильному рынку. Вслед за BMW в экологическую сторону потянулись и другие производители. К концу века каждая уважающая себя автокомпания имела в запаснике хотя бы один концепт-кар, работающий на водородном топливе.

  • Слайд 18
  • Слайд 19

    Водород и будущее

    Слова «дейтерий» и «тритий» напоминают нам о том, что сегодня человек располагает мощнейшим источником энергии, высвобождающейся при реакции: 21Н + 31Н → 42Не +10n + 17,6 МэВ. Эта реакция начинается при 10 млн градусов и протекает за ничтожные доли секунды при взрыве термоядерной бомбы, причем выделяется гигантское по масштабам Земли количество энергии. Водородные бомбы иногда сравнивают с Солнцем. Однако мы уже видели, что на Солнце идут медленные и стабильные термоядерные процессы. Солнце дарует нам жизнь, а водородная бомба – сулит смерть...

  • Слайд 20

    Но когда-нибудь настанет время – и это время не за горами, – когда мерилом ценности станет не золото, а энергия. И тогда изотопы водорода спасут человечество от надвигающегося энергетического голода: в управляемых термоядерных процессах каждый литр природной воды будет давать столько же энергии, сколько ее дают сейчас 300 л бензина. И человечество будет с недоумением вспоминать, что было время, когда люди угрожали друг другу животворным источником тепла и света...

Посмотреть все слайды

Сообщить об ошибке