Презентация на тему "Решение задач оптимизации в MS Excel"

Презентация: Решение задач оптимизации в MS Excel
Включить эффекты
1 из 18
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Решение задач оптимизации в MS Excel" по информатике. Презентация состоит из 18 слайдов. Для учеников 10-11 класса. Материал добавлен в 2016 году. Средняя оценка: 4.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 1.44 Мб.

Содержание

  • Презентация: Решение задач оптимизации в MS Excel
    Слайд 1

    Решение задач оптимизации в MS Excel

    ГБОУ Центр образования № 133 Невского района авт. Баринова Е.А.

  • Слайд 2

    Для решения задач оптимизации необходимо:

    Задать целевую функцию Создать математическую модель задачи Решить задачу на компьютере

  • Слайд 3

    Математическая модель

    Математическая модель – это приближенное описание какого-либо класса явлений средствами математической символики. При составлении математической модели решения задачи оптимизации искомые величины принимаются за неизвестные и составляется система неравенств, наиболее полно характеризующих решение поставленной задачи. В любую математическую модель входят две составляющие: Ограничения, которые устанавливают зависимости между переменными. Граничные условия показывают, в каких пределах могут быть значения искомых переменных в оптимальном решении.

  • Слайд 4

    Задача

    Компания производит полки для ванных комнат двух типов - А и В. Агенты по продаже считают, что за неделю на рынке может быть реализовано до 550 полок. Для каждой полки типа А требуется 2 м2 материала, для полки типа В - 3 м2 материала. Компания может получить до 1200 м2 материала в неделю. Для изготовления одной полки типа А требуется 12 мин. работы оборудования, а для изготовления одной полки типа В - 30 мин. Оборудование можно использовать 160 час. в неделю. Если прибыль от продажи полок типа А составляет 3 долл., а от полок типа В - 4 долл., то сколько полок надо выпускать в неделю, чтобы получить максимальную прибыль?

  • Слайд 5

    Целевая функция

    Очевидно, что в качестве критерия оптимизации в данном случае выступает функция прибыли. Оптимальным будет считаться тот из вариантов решения, в котором значение прибыли будет максимальным. Учитывая, что «…прибыль от продажи полок типа А составляет 3 долл., а от полок типа В - 4 долл.…» целевая функция будет выглядеть следующим образом: 3x1 + 4x2 max, где x1 – объем производства полок типа A x2 – объем производства полок типа B

  • Слайд 6

    Ограничение на объем производства:

    «…Агенты по продаже считают, что неделю на рынке может быть реализовано до 550 полок…» Очевидно, что совокупный объем производства полок не должен превышать 550 единиц, или, в математическом виде: x1 + x2  550

  • Слайд 7

    Ограничение на использование оборудования:

    «…Для изготовления одной полки типа А требуется 12 мин. работы оборудования, а для изготовления одной полки типа В - 30 мин. Оборудование можно использовать 160 часов в неделю…» На основе этой информации можно сделать вывод, что общее время использования оборудования в рамках данного проекта не должно превышать 160 часов в неделю. Переведя время, необходимое для изготовления одной полки в часы (с целью сопоставимости единиц измерения правой и левой части неравенства) получим: 0,2x1 + 0,5x2  160

  • Слайд 8

    Ограничение на использование материалов:

    «…Для каждой полки типа А требуется 2 м2 материала, для полки типа В - 3 м2 материала. Компания может получить до 1200 м2 материала в неделю…» На основе этой информации можно сделать вывод, что общее количество материала, затрачиваемого для реализации данного проекта, не должно превышать 1200 м2: 2x1 + 3x2  1200

  • Слайд 9

    Граничные условия

    В качестве граничных условий в данном примере могут быть использованы следующие утверждения, вытекающие из сути поставленной задачи: Объем производства полок типа А и полок типа В – неотрицательное значение. Объем производства полок типа А и полок типа В – целое число, запишем таким образом: x1, x2  0 x1, x2 – целое

  • Слайд 10

    Ввод условий задачи

    Ввод условий задачи состоит из следующих основных шагов: Создание формы для ввода данных, необходимых для последующего решения. Ввод исходных данных и зависимостей из математической модели. Указание целевой ячейки (ячейки, в которую введена целевая функция), ввод ограничений и граничных условий в диалоговом окне Поиск решения.

  • Слайд 11

    Создание формы для ввода данных

    Такая форма должна содержать возможность ввода всех данных, необходимых для решения поставленной задачи: искомых переменных; целевой функции; правой и левой части неравенств, описывающих ограничения, налагаемые на возможные варианты решения поставленной задачи.

  • Слайд 12

    Ввод исходных данных

    Отметим, что целевая функция и левые части неравенств, определяющих возможные варианты решения поставленной задачи, вводятся формулой, в которой роль искомых переменных играют адреса ячеек, зарезервированных для вывода их значений после решения задачи, а роль коэффициентов – адреса ячеек, содержащих соответственные коэффициенты.

  • Слайд 13

    Назначение целевой функции, ввод ограничений и граничных условий

    Данная стадия ввода условия задачи осуществляется в диалоговом окне Поиск решения

  • Слайд 14

    Назначить целевую ячейку

    Для этого в поле «Установить целевую ячейку:» вводится адрес ячейки, содержащей целевую функцию. Затем устанавливается направление последней – значение, к которому она должна стремиться исходя из условий задачи (минимальное, максимальное, конкретное, задаваемое пользователем). В поле «Изменяя ячейки:» ввести адреса ячеек, зарезервированных для искомых переменных.

  • Слайд 15

    Ввести ограничения и граничные условия

    Ввести ограничения и граничные условия. Для этого в диалоговом окне Поиск решения нажать на кнопку Добавить. В открывшемся диалоговом окне Добавление ограничений: в поле «Ссылка на ячейку:» ввести адрес ячейки листа, содержащей формулу для расчета показателя, используемого в качестве левой части неравенства, из списка знаков неравенств выбрать необходимый знак, в поле «Ограничение:» указать адрес ячейки, содержащей показатель, используемый в качестве правой части неравенства.

  • Слайд 16

    Получение результата

    После нажатия на кнопку Выполнить диалогового окна Поиск решения на экране появляется диалоговое окно Результаты поиска решения.

  • Слайд 17

    Решение найдено

  • Слайд 18

    Оптимальное решение поставленной задачи

    полок типа А - в количестве 450 штук (В3); полок типа В – в количестве 100 штук (С3). При этом максимальная прибыль будет составлять 1720 единиц, а ресурсы используются следующим образом: потребление материала – 1200 единиц (D10); использование оборудования – 140 часов (D11).

Посмотреть все слайды

Сообщить об ошибке