Презентация на тему "Быстрое преобразование Фурье"

Презентация: Быстрое преобразование Фурье
Включить эффекты
1 из 11
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Быстрое преобразование Фурье"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 11 слайдов. Также представлены другие презентации по математике. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    11
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Быстрое преобразование Фурье
    Слайд 1

    Лекция № 12 Быстрое преобразование Фурье

    Нахождение спектральных составляющих дискретного комплексного сигнала непосредственно по формуле ДПФ требует комплексных умножений и комплексных сложений. Так как количество вычислений, а следовательно, и время вычислений приблизительно пропорциональны , то при больших количество арифметических операций весьма велико. Поэтому нахождение спектра в реальном времени даже для современной вычислительной техники представляет сложную задачу. По этой причине представляет значительный интерес вычислительные процедуры, уменьшающие количество умножений и сложений.

  • Слайд 2

    Быстрое преобразование Фурье

    Основной принцип всех этих алгоритмов заключается в разложении операций вычисления ДПФ сигнала длины на вычисление преобразований Фурье с меньшим числом точек. Разделив анализируемый набор отсчетов на части, вычисляют их ДПФ и объединяют результаты. Такие процедуры получили название алгоритмов быстрого преобразования Фурье БПФ. При реализации БПФ возможно несколько вариантов организации вычислений в зависимости от способа деления последовательности отсчетов на части (прореживание по времени или по частоте) и от того, на сколько фрагментов производится разбиение последовательности на каждом шаге (основание БПФ).

  • Слайд 3

    Рассмотрим алгоритмы БПФ с основанием 2, когда длина последовательности , где целое число. БПФ с прореживанием по времени. Рассмотрим идею БПФ с прореживанием по времени на примере деления набора отсчетов пополам. Введя общепринятое в литературе обозначение для дискретных экспоненциальных функций: Запишем ДПФ сигнала в виде:

  • Слайд 4

    Разобьем на две -точечные последовательности, состоящие из отсчетов с четными и нечетными номерами соответственно. В результате получим: Заменяя индексы суммирования на при четном и на при нечетном , придем к выражению:

  • Слайд 5

    Так как , то предыдущее выражение можно записать в виде: (12.1) Каждая из сумм (12.1) является точечным ДПФ: первая – для четных отсчетов исходной последовательности, а вторая – для нечетных. Несмотря на то, что индекс в формуле (12.1) распространяется на значений , каждая из сумм требует вычислений только для , так как и периодичны по с периодом . Объединение же этих сумм приводит к точечному ДПФ .

  • Слайд 6

    Схема БПФ N|2 ДПФ N|2 ДПФ Рис.12.1

  • Слайд 7

    Далее можно вычислить каждое точечное ДПФ разбиением сумм на два точечных ДПФ. Таким образом, и могут быть вычислены в виде:

  • Слайд 8

    Продолжим описанную процедуру разбиения исходной ДПФ на преобразования меньшей размерности, пока не останутся только двухточечные преобразования. Двухточечные ДПФ (их число равно ) могут быть вообще вычислены без использования операций умножения. Действительно, для двухточечной последовательности согласно определению ДПФ имеем два спектральных отсчета:

  • Слайд 9

    Число требуемых при этом пар операций «умножение – сложение» можно оценить как . Таким образом, вычислительные затраты по сравнению с непосредственным использованием формулы ДПФ уменьшается в раз. При больших это отношение становится весьма велико. Например, при достигается более чем 100-кратное ускорение, но и это еще не предел. Количество комплексных умножений в алгоритме БПФ с прореживанием по времени может быть сокращено вдвое.

  • Слайд 10

    Из рассмотренного алгоритма следует, что на каждой ступени вычислений происходит преобразование одного множества из комплексных чисел в другое множество из комплексных чисел. Будем считать входным массивом на ступени вычисления , а – выходным массивом на ступени вычислений. С учетом введенных обозначений имеем:

  • Слайд 11

    Вышеприведенные соотношения подсказывают метод сокращения числа комплексных умножений вдвое. Так как , эти соотношения можно записать в виде: Так как на каждую ступень разбиения имеется таких операций, а общее число ступеней равно , то общее число пар операций «умножение-сложение» сокращается до .

Посмотреть все слайды

Сообщить об ошибке