Презентация на тему "Числа Фибоначчи и золотое сечение"

Презентация: Числа Фибоначчи и золотое сечение
Включить эффекты
1 из 27
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Числа Фибоначчи и золотое сечение" по математике. Презентация состоит из 27 слайдов. Материал добавлен в 2017 году. Средняя оценка: 5.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 2.8 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    27
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Числа Фибоначчи и золотое сечение
    Слайд 1

    Числа Фибоначчи изолотое сечение

    МБОУ «Малыгинская средняя общеобразовательная школа» Выполнила ученица 9 «а» класса Кузнецова Юлия под руководством учителя математики Большаковой О.К.

  • Слайд 2

    «Числа не управляют миром, но показывают, как управляется мир» И.В.Гете

  • Слайд 3

    Труды:«Книга Абака»«Книга квадратов»«Практикагеометрии»…………

    Леонардо Пизанский (Фибоначчи) 1170-1240 1.Введение десятичнойсистемыисчисления в Европе. 2.Приобщение Европейских ученых к достижениям индийских и арабских математиков

  • Слайд 4

    «Сколько пар кроликов родится в течении года, если известно, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения"

  • Слайд 5

    «Сколько пар кроликов родится в течении года, если известно, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения" 1 1 2 3 5 8 Пара новорожденных кроликов Пара взрослых кроликов

  • Слайд 6

    Числа Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,… 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,… 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,… 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,… 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,…

  • Слайд 7

    Числа Фибоначчи 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,… Свойства последовательности : Каждое третье число Фибоначчи четно Каждое четвертое делится на три Каждое пятнадцатое оканчивается нулем Два соседних числа взаимно просты

  • Слайд 8

    Числа Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,… Коэффициент Фибоначчи: φ(фи)=0,618… (Золотой коэффициент, золотая середина) 1:1=1,0000 1:2=0,5000 2:3=0,666 3:5=0,6000 5:8=0,6250 8:13=0,6150 13:21=0,6190 21:34=0,6170 34:55=0,6180 55:89=0,6179 Фидий (v в. до н.э.) (древнегреческий скульптор)

  • Слайд 9

    Определение Золотого сечения Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a:b=b:c или с:b=b:а.

  • Слайд 10

    c b b a = = 0.618= φ Отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста Золотое сечение в природе

  • Слайд 11

    Числа Фибоначчи проявляются в строении различных организмов 5, 8, 13, 21, 34, 55…

  • Слайд 12

    Коэффициент φ Отношение расстояния между запястьем и локтем к расстоянию между кончиками пальцев и локтем равно 0,618 ……………. Длина каждой фаланги пальца находится в пропорции φк следующей фаланге ………….... Пропорция φ обычно отмечается в тех местах, где что-то сгибается или меняет направление У маленьких детей (около года),пропорции составляют 1:1

  • Слайд 13

    Числа Фибоначчи в природе сельдерей (1 и 2) Ананас (8 и 13) сосновая шишка (5 и 8)

  • Слайд 14

    Числа Фибоначчи в природе Семена в подсолнухе растут по спиралям одновременно по и против часовой стрелки от центра цветка наружу. Кол-во спиралей по и против часовой стрелки – это два соседних числа Фибоначчи (34 и 55)

  • Слайд 15

    Числа Фибоначчи в природе. Попав во время каникул куда-нибудь на юг или в ботанический сад, не забудьте изучить разные сочные плоды и кактусы! Попробуйте поискать растения , в которых встречается пара 2 и 3; 3 и 5; 5 и 8; 13 и 21. Может быть они найдутся в вашем саду…

  • Слайд 16

    Числа Фибоначчи в природе Филлотаксис (листорасположение) «Золотое сечение» встречается в растительном мире. Рассматривая расположение трёх подряд идущих пар листьев на общем стебле растения, можно заметить, что между первой и третьей парой вторая находится в месте « золотого сечения».

  • Слайд 17

    Числа Фибоначчи в природе Все сведения о физиологических особенностях живых существ хранятся в ДНК, она тоже содержит закон золотой пропорции. Соотношение длины и ширины спирали молекулы ДНК = 1:1,618

  • Слайд 18

    Проявление Золотого сечения в искусстве. Замечательный пример «золотого сечения» представляет собой правильный пятиугольник - выпуклый и звездчатый. Звездчатый пятиугольник называется пентаграммой. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана , она считалась символом здоровья.

  • Слайд 19

    Портрет Моны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. «Джоконда»

  • Слайд 20

    На знаменитой картине И.И.Шишкина «Сосновая роща» с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны – освещённый солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. «Сосновая роща»

  • Слайд 21

    Проявление Золотого сечения в архитектуре Пирамида Хеопса Длина грани, деленная на высоту, приводит к соотношению φ=0,618

  • Слайд 22

    Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по золотому сечению, то получим те или иные выступы фасада. Парфенон

  • Слайд 23

    Пропорции Покровского собора на Красной площади в Москве определяются восемью числами Фибоначчи. Многие числа здесь повторяются в затейливых элементах храма многократно. Храм Василия Блаженного

  • Слайд 24

    Проявление золотого сечения в музыке В качестве примера построения скрипки на основе закона Золотого сечения возьмем скрипку работы Антонио Страдивари, созданную им в 1700 году.

  • Слайд 25

    Проявление золотого сечения в скульптуре Великий древнегреческий скульптор Фидий часто использовал «золотое сечение» в своих произведениях. Самыми знаменитыми из них были статуя ЗевсаОлимпийского (которая считалась одним из чудес света) и Афины Парфенос. Зевс Олимпийский Афина Парфенос

  • Слайд 26

    Хотя Фибоначчи был одним из величайших математиков, единственные памятники ему- это статуя напротив Пизанской башни и две улицы, одна – в Пизе, а другая во Флоренции. Кажется странным, что так мало людей, приходящих к Пизанской башне, когда - либо слышали о Фибоначчи или обращали внимание на памятник ему.

  • Слайд 27

    На Земле, как и во всей Вселенной, дают о себе знать удивительный порядок и совершенная гармония. Зачастую их невозможно выразить словами и тогда приходится обращаться к языку математики (языку чисел). Вот почему так важно изучать и его. В природе действительно существует основной закон пропорции и коэффициент Фибоначчи помогает понять его. Красота и математика неразрывно связаны друг с другом.

Посмотреть все слайды

Сообщить об ошибке