Презентация на тему "Геометрия Лобачевского"

Презентация: Геометрия Лобачевского
Включить эффекты
1 из 16
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Геометрия Лобачевского" по математике. Состоит из 16 слайдов. Размер файла 1.41 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    16
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Геометрия Лобачевского
    Слайд 1

    ПРЕЗЕНТАЦИЯ УРОКА – КОНФЕРЕНЦИИ Учитель: Иманова Алена Викторовна Школа: МБОУ « Средняя общеобразовательная школа № 21» г. Старый Оскол Белгородской области ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО

  • Слайд 2

    Цель урока

    Познакомить учащихся с неевклидовой геометрией , ее создателями, некоторыми теоремами геометрии Лобачевского. Расширение представлений учащихся о мире: влияние создания неевклидовой геометрии на изучение геометрии Вселенной

  • Слайд 3

    …Чем Коперник был для Птолемея, тем был Лобачевский для Евклида…В. Клиффорд

    Геометрия Лобачевского - геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского

  • Слайд 4

    Создатели неевклидовойгеометрии

    Карл Фридрих Гаусс 1777-1855 ГАУСС НЕ ОПУБЛИКОВАЛ НИ ОДНОЙ РАБОТЫ ПО НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ, НО В ЕГО ДНЕВНИКАХ НАЙДЕНЫ МАТЕРИАЛЫ, КОТОРЫЕ ОБНАРУЖИВАЮТ, ЧТО ОН ПРИШЕЛ К МЫСЛИ О ВОЗМОЖНОСТИ ПОСТРОЕНИЯ НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ .

  • Слайд 5

    Николай Иванович Лобачевский 1792 - 1856 НАИБОЛЕЕ ПОЛНО РАЗРАБОТАЛ НЕЕВКЛИДОВУ ГЕОМЕТРИЮ. ЗАСЛУГОЙ ЛОБАЧЕВСКОГО , КАК УЧЕНОГО , ЯВЛЯЕТСЯ ТО, ЧТО ОН ВПЕРВЫЕ ПРОБИЛ БРЕШЬ В ВОСПРИЯТИИ ГЕОМЕТРИИ КАК ЕДИНСТВЕННО МЫСЛИМОЙ ЛОГИЧЕСКОЙ СИСТЕМЫ.

  • Слайд 6

    Янош Больяй 1802 – 1860 УЖЕ К 1825 ГОДУ ПРИШЕЛ К ОСНОВНЫМ ПОЛОЖЕНИЯМ НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ. ОПУБЛИКОВАЛ СВОИ ИССЛЕДОВАНИЯ В 1832 ГОДУ В ПРИЛОЖЕНИИ К ПЕРВОМУ ТОМУ СОЧИНЕНИЙ СВОЕГО ОТЦА – ПРОФЕССОРА МАТЕМАТИКИ.

  • Слайд 7

    О ВАЖНЕЙШИХ ПРЕДМЕТАХ ВОСПИТЕНИЯ Обогатить ум познаниями Сберечь и Укрепить здоровье Воспитать чувство чести и внутреннего достоинства Утвердиться в правилах веры Любить людей Научиться наслаждаться жизнью Дать благородное направление страстям

  • Слайд 8

    Д е н ь р о ж д е н и я

    23 (11) февраля 1826 года Н. И. Лобачевский впервые выступил с изложением своей геометрии перед учеными физико-математического факультета Казанского университета. Этот день считают днем рождения геометрии Лобачевского. Титульный лист первого издания «Воображаемой геометрии»

  • Слайд 9

    СКОЛЬКО ПРЯМЫХ, НЕ ПЕРЕСЕКАЮЩИХ ДАННУЮ ПРЯМУЮ И ПРОХОДЯЩИХ ЧЕРЕЗ ДАННУЮ ТОЧКУ, МОЖНО ПРОВЕСТИ В ДАННОЙ ПЛОСКОСТИ?

    АКСИОМА ПАРАЛЛЕЛЬНОСТИ ЕВКЛИДА: ЧЕРЕЗ ТОЧКУ ВНЕ ПРЯМОЙ НА ДАННОЙ ПЛОСКОСТИ МОЖНО ПРОВЕСТИ НЕ БОЛЕЕ ОДНОЙ ПРЯМОЙ, ПАРАЛЛЕЛЬНОЙ ДАННОЙ. ЛОБАЧЕВСКИЙ РАССМАТРИВАЕТ ДРУГУЮ ВОЗМОЖНОСТЬ: ПРИНЯТЬ, ЧТО ЧЕРЕЗ ТОЧКУ ВНЕ ПРЯМОЙ НА ДАННОЙ ПЛОСКОСТИ МОЖНО ПРОВЕСТИ БОЛЕЕ ОДНОЙ ПРЯМОЙ, ПАРАЛЛЕЛЬНОЙ ДАННОЙ.

  • Слайд 10

    ВСЕ ПРЯМЫЕ, ПРОХОДЯЩИЕ ЧЕРЕЗ ТОЧКУ А, ЛОБАЧЕВСКИЙ РАЗДЕЛЯЕТ НА ТРИ ГРУППЫ:

    A B D C ПЕРЕСЕКАЮТ BC НЕ ПЕРЕСЕКАЮТ BC ПАРАЛЛЕЛЬНЫ ВС

  • Слайд 11

    НЕКОТОРЫЕ ФАКТЫ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО

    1. Сумма углов треугольника меньше 180о ,меняется от треугольника к треугольнику и может приближаться к нулю. 2. Сумма углов всякого выпуклого четырехугольника меньше 360 о и поэтому не существует прямоугольников. 3. В геометрии Лобачевского не существуют подобные треугольники. 4. В геометрии Лобачевского два треугольника равны, если три угла одного треугольника равны трем углам другого. 5. Для любого заданного угла α можно найти такой перпендикулярный отрезок к данной прямой, что угол параллельности равен α.

  • Слайд 12

    Э В Р И К А !

    В реальном трехмерном пространстве геометрия Лобачевского реализуется частично на поверхностях отрицательной кривизны, например, на псевдосфере.

  • Слайд 13

    Геометрия и физическая картина мира

    Лобачевский, показав, что евклидова геометрия не единственна, поставил вопрос о геометрии пространства, в котором развивается Вселенная. Созданная Эйнштейном общая теория относительности установила связь между силой всемирного тяготения и свойствами пространства: пространство в котором мы живем искривлено. Вблизи тяжелых тел, например, вблизи Солнца, механика становится не ньютоновой, а геометрия пространства – неевклидовой.

  • Слайд 14

    ОТО: кривизна пространства

    Солнце В плоскости, проходящей через Солнце, сумма углов большого треугольника, вершины которого – звезды, больше 180 .

  • Слайд 15

    ГЕОМЕТРИЯ МИРА

    Геометрия «мировых областей» средней величины есть геометрия Евклида. Как доказали физики, для описания геометрии Вселенной нужны разные геометрии, гораздо более сложные, чем даже геометрия Лобачевского.

  • Слайд 16

    Литература и web-ресурсы

    Александров П. С. Николай Иванович Лобачевский. «Квант». 1976. № 2. vivovoco.rsl.ru/VV/Q_PROJECT/HEAP/8...Александров П. С. Тупость и гений. «Квант». 1982. №№11, 12 Глейзер Г. И.История математики в школеIX-X классы. — М.: Просвещение, 1983. — С. 348-362. ru.wikipedia.org/wiki/Геометрия_Лобачевского. ru.wikipedia.org/wiki/Лобачевский,_... vivovoco.rsl.ru     GIF 310×310, 18 КБ

Посмотреть все слайды

Сообщить об ошибке