Презентация на тему "Использование проектных технологий при обучении математике как средство достижения результатов образования в соответствии с ФГОС ООО" 5 класс

Презентация: Использование проектных технологий при обучении математике как средство достижения результатов образования в соответствии с ФГОС ООО
Включить эффекты
1 из 30
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Использование проектных технологий при обучении математике как средство достижения результатов образования в соответствии с ФГОС ООО" по математике. Презентация состоит из 30 слайдов. Для учеников 5 класса. Материал добавлен в 2021 году.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.78 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    30
  • Аудитория
    5 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Использование проектных технологий при обучении математике как средство достижения результатов образования в соответствии с ФГОС ООО
    Слайд 1

    Использование проектных технологий при обучении математике как средство достижения результатов образования в соответствии с ФГОС ООО

    Белокрылова Е.В., учитель информатики и математики МБОУ «СОШ № 61»

  • Слайд 2

    Метод проектов

    Базовой образовательной технологией, поддерживающей компетентностно-ориентированный подход в образовании, является метод проектов. Каждые 5-6 лет возникают и становятся востребованными новые области профессиональной деятельности, отходят на задний план и постепенно отмирают устаревшие. Метод проектов позволяет наименее ресурснозатратным способом создать подобную среду. «Дорога та, что сам искал, вовек не позабудется.»

  • Слайд 3
  • Слайд 4

    «Арифметика»

    Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

  • Слайд 5

    «Вероятность и статистика»

    Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

  • Слайд 6

    «Математика в историческом развитии»

    Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

  • Слайд 7

    Изучение математики в основной школе направлено на достижение следующих целей:

    в направлении личностного развития развитие логического и критического мышления, культуры речи, способности к умственному эксперименту; формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта; воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения; формирование качеств мышления, необходимых для адаптации в современном информационном обществе; развитие интереса к математическому творчеству и математических способностей;

  • Слайд 8

    в метапредметном направлении

    формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества; развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования; формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  • Слайд 9

    в предметном направлении

    овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни; создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

  • Слайд 10

    Требования к результатам обучения и освоению содержания курса

    в личностном направлении: умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации; креативность мышления, инициатива, находчивость, активность при решении математических задач; умение контролировать процесс и результат учебной математической деятельности; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

  • Слайд 11

    в метапредметном направлении:

    первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов; умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и пред-ставлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • Слайд 12

    умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • Слайд 13

    в предметном направлении:

    овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления; умение работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений; развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

  • Слайд 14

    овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях; овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений; умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур; умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

  • Слайд 15

    Для чего нужен метод проектов?

    Научить учащихся самостоятельному, критическому мышлению. Размышлять, опираясь на знание фактов, закономерностей науки, делать обоснованные выводы. Принимать самостоятельные аргументированные решения. Научить работать в команде, выполняя разные социальные роли.

  • Слайд 16

    Из исследований известно,

    что учащиеся удерживают в памяти: - 10% от того, что они читают; - 26% от того, что они слышат; - 30% от того, что они видят; - 50% от того, что они видят и слышат; - 70% от того, что они обсуждают с другими; - 80% от того, что основано на личном опыте; - 90 % от того, что они говорят (проговаривают) в то время, как делают; - 95% от того, чему они обучаются сами.

  • Слайд 17

    В своей работе я использую групповые и индивидуальные, монопредметные и межпредметные, информационные и практико-ориентированные проекты. Так же применяю модель учебного занятия в режиме проектного обучения, используя технологию исследовательского проекта.

  • Слайд 18

    Проект – это «пять П».

    1.Наличие проблемы. Работа над проектом всегда направлена на разрешение конкретной проблемы. Нет проблемы – нет деятельности. Метод проектов можно использовать в учебном процессе для решения различных небольших проблемных задач в рамках одного-двух уроков (мини-проекты или краткосрочные проекты). В этом случае тема проекта связана с темой урока или применением данной темы в различных жизненных ситуациях. К примеру, для решения крупных задач (проблем) по математике, сложных для понимания вопросов использую крупные проекты, которые в основном выполняются во внеурочной деятельности. Данные проекты в основном направлены на углубление и расширение знаний по математике. Это так называемые среднесрочные проекты (макро-проекты), применяемые в основном во внеурочных формах работы (кружки, факультативы, элективные курсы). Поле для выбора темы долгосрочных проектов по математике огромно. Проект может быть связан с изучением какой-либо темы по математике, которая не изучается в школьной программе или с приложениями математики в науке и практике.

  • Слайд 19

    Обязательное планирование действий

    В ходе разбора и обсуждения проекта вырабатывается план совместных действий ученика и учителя. Создаётся банк идей и предложений. На протяжении всей работы учитель помогает в постановке цели, корректирует работу, но ни в коем случае не навязывает ученику своё видение решения задачи. Участников проекта я разбиваю на группы от 3 до 5 человек в зависимости от количества учеников в классе. В каждой группе распределяются роли: например, генератор идей, презентатор, дизайнер, критик, энциклопедист, секретарь и др.

  • Слайд 20

    Поиск информации-

    Большую поддержку в этом оказывают Интернет ресурсы. Найденная информация, обрабатывается, осмысливается. После совместного обсуждения выбирается базовый вариант. Учитель корректирует последовательность технологических операций в каждой работе.

  • Слайд 21

    Результат работы

    Учащиеся, выбрав посильные технологии для создания своей работы на компьютере, уточняют, анализируют собранную информацию, формулируют выводы. Учитель выступает в роли научного консультанта. Результаты выполненных проектов должны быть, что называется, «осязаемыми». Если это теоретическая проблема, то конкретное ее решение, если практическая − конкретный результат, готовый к использованию (на уроке, в школе, в реальной жизни).

  • Слайд 22

    В зависимости от места, где применяется метод, могут быть и разные продукты. Например, продуктом самостоятельной деятельности учащихся на уроке, может быть опорный конспект, памятка по методам решения задач, сборник ключевых задач по изучаемой теме и др. Ученики 5-6 классов сочиняют сказку или детективную историю по изучаемой теме.

  • Слайд 23

    Прикладной проект может быть связан с применением математического аппарата в повседневной жизни. Например расчет минимального количества необходимых продуктов и их стоимости, используемых семьей на протяжении месяца; расчет погашения банковского кредита и др. Результатами работы над проектами во внеурочной деятельности становятся рефераты, эссе, электронные пособия, математические модели, мультимедийные продукты и т. д.

  • Слайд 24

    Презентация результатов-

    осуществление проекта требует на завершающем этапе презентации продукта и защиты самого проекта, которую провожу в форме конкурса, выставки, презентации. При защите учащиеся демонстрируют и комментируют глубину разработки поставленной проблемы, её актуальность, объясняют полученный результат, развивая при этом свои ораторские способности. Оценивается каждый проект всеми участниками занятий. Учащиеся с интересом смотрят работы других и с помощью учителя учатся оценивать их. Вычисляется средний балл за каждый проект и выставляется оценка в зависимости от количества набранных баллов: более 85 баллов – «отлично», от 65 до 80 баллов – «хорошо», от 50 до 65 баллов – «удовлетворительно», менее 60 баллов - доработать.

  • Слайд 25

    Мотивация обучения учащихся:

    интерес к предмету – 98%; к практическому материалу – 87%; к области знаний (шире школьного курса) – 42%; желание общаться с педагогом по предмету – 97,8%. Приобщение учащихся к проектной деятельности с использованием компьютерно-информационных технологий позволяет наиболее полно определять и развивать интеллектуальные и творческие способности.

  • Слайд 26

    Проект «Мир координат»

    Основополагающий вопрос «Как определить свое положение в этом мире?» Проблемные вопросы: Как определяют свое положение в море капитаны кораблей? Почему координатная плоскость называется Декартовой? В каких профессиях применяется метод координат?

  • Слайд 27

    Задания группам

    1 группа: создать буклет «Определение положения объекта на географической карте» 2 группа: подготовить доклад «Рене Декарт – создатель системы координат» и задачи на построение изображений по координатам. 3 группа: подготовить презентацию по теме «Применение метода координат в разных профессиях»

  • Слайд 28

    Обыкновенные дроби

    Основополагающий вопрос «Как разделить » Проблемные вопросы: Как появились дроби?

  • Слайд 29

    Проект «Прямоугольный параллелепипед»

    Основополагающий вопрос «Какую форму имеют большинство предметов нас окружающих?» Проблемные вопросы: Сколько воздуха в вашей комнате? Сколько краски надо купить чтобы покрасить комнату? Сколько воды в аквариуме?

  • Слайд 30

    Задания группам

    1 группа: Определить объем своей комнаты и сравнить объемы воздуха в комнатах группы. 2 группа: Определить площадь поверхности комнаты, не учитывая окна и двери, рассчитать количество краски, необходимой для покраски всех поверхностей. 3 группа: Определить объем воды в аквариумах группы.

Посмотреть все слайды

Сообщить об ошибке