Презентация на тему "Конструируем урок математики в соответствии с ФГОС ООО."

Презентация: Конструируем урок математики в соответствии с ФГОС ООО.
Включить эффекты
1 из 26
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Конструируем урок математики в соответствии с ФГОС ООО." по математике, включающую в себя 26 слайдов. Скачать файл презентации 0.63 Мб. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    26
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Конструируем урок математики в соответствии с ФГОС ООО.
    Слайд 1

    Конструируем урок математики в соответствии с ФГОС ООО.

    Лобода Светлана Евгеньевна, г. Нарьян-Мар, учитель математики ГБОУ НАО «Средняя школа п. Искателей»

  • Слайд 2

    Введение Урок должен быть проблемным и развивающим. В центре внимания – дети. Урок достигнет эффективности, если учитель будет применять разнообразные формы работы, сталкивать детей с учебными проблемами, активизировать деятельность учащихся. С целью формирования универсальных учебных действий учитель применяет новые педагогические технологии, использует новые формы, методы и приемы в работе. Приоритетная роль теперь отводится деятельности учащихся.

  • Слайд 3

    Каждое занятие строится по определенной схеме. Можно выделить следующие модули урока по ФГОС:

    1. Мотивация к учебной деятельности. 2. Актуализация и пробное действие. 3. Изучение нового материала. 4. Обсуждение и решение проблем. 5. Решение учебных задач. 6. Контроль знаний, обратная связь. 7. Формирование умения задавать вопросы. 8. Рефлексия учебной деятельности на занятии.

  • Слайд 4
  • Слайд 5
  • Слайд 6
  • Слайд 7
  • Слайд 8

    Прием «Отсроченная отгадка»

  • Слайд 9

    Прием «Нестандартный вход в урок»

    Комбинаторные задачи 5 класс: Представьте, что после посещения футбольного матча вам удается узнать номер телефона вашего кумира, придя домой решаете ему набрать и поговорить. Но вдруг набирая, номер не можете вспомнить последнюю цифру телефона. - Что вы будете делать? Ученик: - перебирать все возможные цифры от 0 до 9. - Как еще можно назвать этот перебор цифр? Ученик: - перебор всех возможных комбинаций. - Сегодня на уроке мы будем решать задачи, где используются всевозможные комбинации. Сейчас подумайте и скажите, как можем назвать такие задачи.

  • Слайд 10

    Прием «Удивляй»

    Кто из нас не мечтал о том, чтобы уроки делались сами, золотая рыбка выполняла наши желания. Сегодня, я хочу рассказать вам о школьнике Вовке, который мечтал о сказочной жизни, ведь в сказках всё делается по щучьему веленью. Труднее всего Вовке давалась математика. И думал он, что уж в сказках математика уж точно не нужна. Приглашаю и я вас в увлекательное путешествие в тридевятое царство. А также помочь Вовке справится со всеми трудностями, ведь математику он не выучил.

  • Слайд 11

    Историческая справка

    Изучение вопроса о сумме n–первых членах арифметической прогрессии в 9-ом классе начинаю с рассказа: “Примерно 200 лет тому назад в одной из школ Германии на уроке математики учитель предложил ученикам найти сумму первых 100 натуральных чисел. Все принялись подряд складывать числа, а один ученик почти сразу же дал правильный ответ. Имя этого ученика Карл Фридрих Гаусс. В последствии он стал великим математиком. Давайте и мы узнаем, как Гаусс так быстро сложил числа.”

  • Слайд 12

    Приём “Корзина идей, понятий, имен”

    Это прием организации индивидуальной и групповой работы учащихся на начальной стадии урока, когда идет актуализация имеющегося у них опыта и знаний. Он позволяет выяснить все, что знают или думают ученики по обсуждаемой теме урока. На доске можно нарисовать значок корзины, в которой условно будет собрано все то, что все ученики вместе знают об изучаемой теме.

  • Слайд 13

    Прием «Согласен – не согласен»

    Данный прием дает возможность быстро включить детей в мыслительную деятельность и логично перейти к изучению темы урока. Например: Геометрия 10 класс Согласны ли вы, что прямая и плоскость могут не иметь общих точек? Верно ли, что если две прямые не пересекаются, то они параллельны? Верно ли, что если прямая 𝑎 параллельна одной из двух параллельных плоскостей, с другой плоскостью прямая 𝑎 имеет только одну общую точку?

  • Слайд 14

    Приём «Толстый и тонкий вопрос»

    Это прием из технологии развития критического мышления используется для организации взаимоопроса. Стратегия позволяет формировать: умение формулировать вопросы; умение соотносить понятия. Тонкий вопрос предполагает однозначный краткий ответ. Толстый вопрос предполагает ответ развернутый. После изучения темы учащимся предлагается сформулировать по три «тонких» и три «толстых» вопроса», связанных с пройденным материалом. Затем они опрашивают друг друга, используя таблицы «толстых» и «тонких» вопросов.

  • Слайд 15

    Прием "Да-нетка"

    Выберите из предложенных записей букву верного высказывания. Подсказка – название агенства состоит из 6 букв. Ф 8/10=0,8 А 145/100 =14,5 Е 11/1000 =1,001 М 34/10 =3,4 О 48см=4,8м И 7,20=7,2 Л 0,5=0,05 Д 2,5000=2,5 А 15=15,00 Ответ: Фемида. “Фемида” - греческая богиня правосудия.

  • Слайд 16

    Приём «Связи»

    «Открытие» теорем учащимися возможно и в ходе специально организованной деятельности. Так, приступая к изучению теоремы Виета, учитель сначала предлагает учащимся выполнить следующую систему заданий: - Вспомните, какие квадратные уравнения называют приведёнными и приведите примеры. - Запишите приведённое квадратное уравнение (х2 + рх + д = 0) и найдите значение его дискриминанта. - Составьте формулы корней х1 и х2 приведённого квадратного уравнения. - Найдите сумму корней х 1 и х 2 сделайте вывод. - Найдите произведение корней х1 и х 2 и сделайте вывод. - Обобщая полученные результаты, учитель сообщает, что учащиеся «открыли» теорему Виета, и разъясняет, почему она была так названа.

  • Слайд 17

    Прием «Лови ошибку»

    7 кл. Тема «Линейные уравнения с одной переменной». (3Х + 7) х 2 – 3 = 17 6Х + 14 – 3 = 17 6Х = 17 – 14 – 3 6Х = 0 Х = 0 Естественно при проверке ответ не сходится. Проблемная ситуация. Ищут ошибку. Дети решают проблему. После этого учащиеся очень внимательно следят за мыслью и решением учителя. Результат - внимательность и заинтересованность на уроке.

  • Слайд 18

    Прием «Практическая работа»

    7 класс «Сумма углов треугольника» проводится практическая работа, с использованием готовых моделей: склеивают поочередно углы треугольника и делают вывод о сумме углов треугольника. Хотя треугольники у всех разные, а результат получился одинаковый.

  • Слайд 19

    Стратегия «Фишбоун

  • Слайд 20

    Ситуационные и изобретательские задачи

    У соседей раздор. Хозяину синего участка, чтобы попасть на свой огород, надо проходить по красному участку соседа. Что делать? Выдвигают версии урегулирования спора. Вместе с учителем выбирают верную: надо синему взять кусок земли красного, а ему взамен отдать равновеликий. Из опыта мы знаем, что равные земельные участки имеют равные площади.–Какой вывод мы может сделать?

  • Слайд 21

    Освещение комнаты считается нормальным, если площадь проёмов окон составляет не менее 20% площади пола. Определите, нормальное ли освещение вашего класса. Маша пользуется сотовым оператором МТС. Тарифный план сотового номера Маши «Макси», который в день со счета снимает 25руб. Наутро у Маши на балансе было -4,95 руб. В обед мама пополнила счет номера Маши, оплатив 150руб. через терминал. За услуги терминал отнимает 6% от всей суммы, внесенного платежа. Сколько рублей стала на балансе, после пополнения? Посчитайте, сколько всего дней баланс сотового номера Маши продержится на «плюсе».

  • Слайд 22

    Нетрадиционные формы проведения контроля

    Контроль знаний можно осуществлять как в традиционной форме—контрольная работа, зачет, письменный опрос, диктант, сочинение, тестирование. Наибольший эффект на данном этапе можно получить: если предложить учащимся на выбор несколько заданий разного уровня; если использовать нетрадиционные формы проведения контроля; если включить в проверочную работу задания, которые обозначат границы применения имеющихся знаний, приоткроют новые возможности и неизвестные пока знания. Нетрадиционные формы проведения контроля: творческие работы по теме «Координатная плоскость», викторины.

  • Слайд 23

    Прием «Ромашка Блума»

    Описание: "Ромашка" состоит из шести лепестков, каждый из которых содержит определенный тип вопроса. Таким образом, шесть лепестков - шесть вопросов Например, работа учащихся по теме: "Признаки делимости на 2,5,10": Простые вопросы: -Какие числа делятся на 2(5,10)? Уточняющие: -Верно ли я тебя понял, что если число оканчивается цифрой 0, то оно делится на 5? Объяснительные: - Почему сумма двух нечетных чисел является четным числом? Практические:-Где используются признаки делимости? Творческие: -Что было бы, если бы не были известны признаки делимости? Оценочные:- Что тебе не понятно по данной теме?

  • Слайд 24

    Рефлексия

    В практике организации рефлексии насчитывается большое количество приемов. При организации рефлексии важно помнить, что приемы следует разнообразить, каждому приему свое место в предмете и теме урока, рефлексия проводится не для учителя, не для логического завершения урока, а для ученика.

  • Слайд 25

    Вывод

    Такие методы и приемы позволяют отметить ребенку свою значимость и ценность знания, которое он «добыл» самостоятельно. Такие уроки оживляют мысль, дают возможность не только поднять интерес к изучаемому предмету, но и развивают их творческую самостоятельность. Но это не значит, что традиционные приемы и методы работы нужно отвергать. Их можно применять в новом ключе, наряду с современными технологиями.

  • Слайд 26

    Спасибо за внимание. Всем творческих успехов.

Посмотреть все слайды

Сообщить об ошибке