Содержание
-
Логические ЗАДАЧИ Для Любознательных Автор:ЦыбиковаСэндэмаДугаровна Учитель математики СОСОШ№2
-
Задача 1 Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
-
Ответ: Поскольку Митя не мог провести один и тот же день и в Смоленске и в Вологде, значит, месяц начинался во вторник (ведь иначе первый вторник и первый вторник после первого понедельника совпали бы). Аналогично заключаем, что и второй месяц должен начинаться во вторник. Это возможно только в случае, когда один месяц — февраль, а другой — март, причём год не високосный. Отсюда уже легко получить, что в Смоленске Митя был 1 февраля, в Вологде — 8 февраля, во Пскове — 1 марта, во Владимире — 8 марта.
-
Задача 2. На острове живут два племени — аборигены и пришельцы. Известно, что аборигены всегда говорят правду, пришельцы — всегда лгут. Путешественник нанял туземца-островитянина в проводники. По дороге они встретили какого-то человека. Путешественник попросил проводника узнать, к какому племени принадлежит этот человек. Проводник вернулся и сообщил, что человек назвался аборигеном. Кем был проводник — аборигеном или пришельцем?
-
Ответ: второй туземец, кем бы он ни был, на вопрос: "Абориген ли Вы?" ответит положительно. Значит, проводник не обманул путешественника, следовательно, и он тоже абориген. Ответ Проводник абориген.
-
Задача 3. Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета.
-
Решение Выберем два кувшина разной формы. Если они при этом различаются по цвету, то задача решена. Если же они оказались одного цвета, тогда возьмём любой кувшин, не совпадающий с ними по цвету. Этот третий кувшин не будет совпадать с одним из двух наших кувшинов и по форме. Эти два кувшина (третий и тот, который не совпадает с ним по форме) и будут искомыми кувшинами. .
-
Задача 4. Три друга — Пётр, Роман и Сергей — учатся на математическом, физическом и химическом факультетах. Если Пётр математик, то Сергей не физик. Если Роман не физик, то Пётр математик. Если Сергей не математик, то Роман — химик. Сможете ли вы определить специальности каждого?
-
Решение: Предположим, что Роман не физик, тогда (по условию 2) Пётр математик, но если Пётр математик, то Сергей (по условию 1) не физик — получилось явное противоречие. Значит, Роман — физик. Тогда Сергей математик — иначе (по условию 3) Роман был бы химиком. Значит, Пётр — химик. Итак: Пётр — химик, Роман — физик, Сергей — математик. Ответ Пётр — химик, Роман — физик, Сергей — математик.
-
Задача 5. Илье Муромцу, Добрыне Никитичу и Алёше Поповичу за верную службу дали 6 монет: 3 золотых и 3 серебряных. Каждому досталось по две монеты. Илья Муромец не знает, какие монеты достались Добрыне, а какие Алёше, но знает, какие монеты достались ему самому. Придумайте вопрос, на который Илья Муромец ответит ''да'', ''нет'' или ''не знаю'', и по ответу на который Вы сможете понять, какие монеты ему достались.
-
Ответ: Проверим, что годится вопрос: ''Правда ли, что у тебя золотых монет больше, чем у Алёши Поповича?'' Если у Ильи Муромца две золотые монеты, он скажет ''да'', поскольку у Алёши Поповича не может быть больше одной золотой монеты. Если обе монеты у Ильи серебряные, то у Алёши хотя бы одна золотая, и Илья Муромец ответит ''нет''. Ну а если ему достались разные монеты, то он ответит ''не знаю'', так как у Алёши может оказаться как две золотые, так и две серебряные монеты. Конечно, можно было задать и другие вопросы, например: -- Правда ли, что одному из двух других богатырей достались две серебряные монеты? -- Верно ли, что два других богатыря получили хотя бы по одной золотой монете каждый? -- Если я заберу у тебя одну монету и дам вместо неё золотую, станет ли у тебя больше золотых? (Заметьте, что в последнем вопросе не упоминаются монеты двух других богатырей, а только монеты, доставшиеся Илье Муромцу!)
-
Задача 6. В комнате 12 человек; некоторые из них честные, то есть всегда говорят правду, остальные всегда лгут. "Здесь нет ни одного честного человека", - сказал первый. "Здесь не более одного честного человека", - сказал второй. Третий сказал, что честных не более двух, четвёртый - что не более трёх, и так далее до двенадцатого, который сказал, что честных людей не более одиннадцати. Сколько честных людей в комнате на самом деле?
-
Ответ: Заметим, что если кто-то из присутствующих солгал, то и все предыдущие солгали. Такие в комнате есть, иначе первый сказал правду, а по его словам, честных в комнате нет. По аналогичной причине в комнате обязательно есть и честные. Пусть в комнате x лжецов. Последний лжец сказал, что в комнате не более (x - 1) честного. Значит, на самом деле в комнате не менее x честных. Далее, (x + 1)-й человек уже сказал правду про то, что в комнате не более x честных. Значит, количество честных в точности равно x, то есть количеству лжецов. Следовательно, в комнате 6 честных человек. Ответ 6 человек.
-
:http://problems.ru/ Ресурсы: https://im0-tub-ru.yandex.net/i?id=cacb3d9eace156f02e7d31dbee1e7e9e-l&n=13http:// www.fizmatolimp.ru/5-6-7-kl.html
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.