Презентация на тему "Логические задачи для начальной школы"

Презентация: Логические задачи для начальной школы
Включить эффекты
1 из 28
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (1.25 Мб). Тема: "Логические задачи для начальной школы". Предмет: математика. 28 слайдов. Добавлена в 2021 году. Средняя оценка: 5.0 балла из 5.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    28
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Логические задачи для начальной школы
    Слайд 1

    Задачи логического характера не требующие вычислений

  • Слайд 2

    «Главная задача обучения математике, причём с самого начала, с первого класса, - учить рассуждать, учить мыслить» ведущий отечественный методист А.А. Столяр

  • Слайд 3

    «Логика - это наука о законах правильного мышления, о требованиях, предъявляе- мых к последовательному и доказательному рассуждению» немецкий философ И. Кант

  • Слайд 4

    ЗАДАЧИ ТИПА «КТО ЕСТЬ КТО?» Смысл задач под кодовым названием «Кто есть кто?» довольно прост. Вам даны отношения между предметами и следуя по цепочке этих отношений, вы приходите к правильному результату. Существует несколько методов решения задач типа «Кто есть кто?». Один из методов решения таких задач – метод графов. Второй способ, которым решаются такие задачи – табличный способ.

  • Слайд 5

    Красный, синий, желтый и зеленый карандаши лежат в четырех коробках по 1шт. Цвет карандаша отличается от цвета коробки. Известно, что зеленый карандаш лежит в синей коробке, а красный не лежит в желтой. В какой коробке лежит каждый карандаш? Решение методом графов

  • Слайд 6

    Решение логических задач методом таблиц Задача. В каких квартирах живут котята? Белый котёнок живёт не в квартире № 1. В квартирах № 1 и 2 живут не чёрные котята. В квартирах № 1, 2, 3 живут три котёнка – белый, чёрный, рыжий. В какой квартире какой котёнок живёт?

  • Слайд 7

    Кто где живёт? Так как чёрный котёнок не живёт в квартирах №№ 1 и 2 ( по условию ), значит, чёрный живёт в квартире № 3. 2. Так как чёрный живёт в квартире № 3 ( по доказательству ), значит белый и рыжий не живут в квартире № 3. 3. Так как белый котёнок не живёт в квартире № 1 ( по условию ) и не в квартире № 3 ( по доказательству ), значит, белый живёт - в № 2. 4. Так как белый живёт - в № 2 ( по доказательству ), значит, рыжий не живёт - в № 2. 5. Так как рыжий не живёт - в № 2 и 3 (по доказательству ), значит, рыжий живёт – в № 1. Ответ: белый живёт в квартире № 2, чёрный - в № 3, рыжий - в № 1 .

  • Слайд 8

    Решение логических задач методом рассуждений Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

  • Слайд 9

    1. Вадим изучает китайский; 2. Сергей не изучает китайский; 3. Михаил не изучает арабский. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей. Имеется три утверждения: Ответ: Сергей изучает китайский язык, Михаил - японский, Вадим - арабский.

  • Слайд 10

    Решение логических задач методом блок-схем Сначала выделяются операции. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи.

  • Слайд 11

    Задача! Имеются два сосуда — трехлитровый и пятилитровый. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды.

  • Слайд 12

    Дальше эта последовательность будет полностью повторяться. Из таблицы видим, что количество воды в обоих сосудах вместе образует следующую последовательность: 0, 5, 2, 7, 4, 1, 6, 3, 0 и т.д. Таким образом, действуя по приведенной схеме, можно отмерить любое количество литров от 1 до 7. Чтобы отмерить еще и 8 литров, надо наполнить оба сосуда.

  • Слайд 13

    КРУГИ ЭЙЛЕРА ЗАДАЧИ НА ПЕРЕСЕЧЕНИЕ ИЛИ ОБЪЕДИНЕНИЕ МНОЖЕСТВ Круги Эйлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Леонард Эйлер

  • Слайд 14

    Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»? Задача: "Обитаемый остров" и "Стиляги"

  • Слайд 15

    ТАКТИЧЕСКИЕ ЗАДАЧИ Решение тактических и теоретико-множественных задач заключается в составлении учащимися плана действий, который приводит к правильному ответу. Сложность состоит в том, что выбор нужно сделать из очень большого числа вариантов, т.е. эти возможности не известны учащимся, их нужно придумать.

  • Слайд 16

    - Задаю тебе последнюю задачу, - сказала принцесса Иванушке, - найди единственно верный путь из этой комнаты в наш зимний сад и сорви для меня самую красивую розу. Из этой комнаты ты пройдешь через левую, или правую, или среднюю дверь во вторую комнату; такие же три вида дверей будут перед тобой при переходе из второй комнаты в третью и из третей - в сад. Учти мои советы, - продолжала принцесса, - первый: из этого зала пройди через правую дверь; второй: из второй комнаты - не через правую дверь, и третий совет: из третей - не через левую дверь. Иванушка знал, что обычно из трех советов принцессы ровно в двух указывают ложное направление, кроме того, служанка принцессы успела шепнуть ему, что надо пройти через дверь каждого вида по одному разу. Как и полагается сказке, принес Иванушка розу и был вознагражден. Какой же маршрут оказался верным?

  • Слайд 17

    + - + П С Л + + - + - + С Л П Л П С - + - + + + Л С Л П С П Для решения этой задачи нужно рассмотреть всевозможные маршруты, т. к. на избранном пути не должно быть одинаково расположенных дверей, то возможно лишь 6 различных маршрутов (3!). Воспользуемся графами (рис. 27). «Плюс» на соединительном отрезке означает правильный, а «минус» - ложный ответ принцессы. Так как верен один совет, то правильный маршрут тот, который отмечен одним знаком «+» и двумя «-», а именно Л - П - С. Решение

  • Слайд 18

    Буквенные ребусы Буквенные ребусы и задачи со звездочками Методом подбора и рассмотрения различных вариантов решаются буквенные ребусы и примеры со звездочками. Такие задачи различны по сложности и схеме решения. Рассмотрим один такой пример:

  • Слайд 19

    Перед началом бегов на ипподроме четыре знатока из числа зрителей обсуждали шансы фаворитов А, В или С. Ребусы Первый: Заезд выиграет А или С. Второй: Если А придет третьим, то С не выиграет. Третий: Если А будет вторым, то выиграет В. Четвертый: Вторым придет А или В. После заезда выяснилось, что три фаворита А, В, С действительно заняли первые три места и что все четыре утверждения знатоков оказались истинными. Как фавориты поделили между собой три первых места?

  • Слайд 20

    Возможны 6 вариантов исхода заезда (з!): А В С А С В (4) В С А (1), (4) В А О (1) С А В (3) С В А (2)

  • Слайд 21

    ИСТИННОСТНЫЕ ЗАДАЧИ Истинностные задачи – это задачи, в которых требуется установить истинность или ложность высказываний. Украли у Ивана Царевича Василису Прекрасную. Поехал он выручать ее. Поймал Змея Горыныча, Бабу Ягу, Кощея Бессмертного и Лешего – Иван Царевич знал, что один из них украл ее. И спрашивает: «Кто украл Василису?» Змей Горыныч, Баба Яга и Кощей Бессмертный ответили: «Не я», а Леший – «Не знаю». Потом оказалось, что двое из них сказали правду, а двое – неправду. Знает ли Леший, кто украл Василису? Задание!

  • Слайд 22

    Задачи, решаемые с конца Ответ. 7 – искомое число. Задуманное число Я задумала число, умножила его на два, прибавила три и получила 17. Какое число я задумала? Решение: 17 – 3 = 14 – число до прибавления 3. 14 : 2 = 7 – искомое число.

  • Слайд 23

    ЗАДАЧИ НА ПЕРЕЛИВАНИЕ Однажды Винни-Пух захотел полакомиться медом и пошел к пчелам в гости. По дороге нарвал букет цветов, чтобы подарить труженицам пчелкам. Пчелки очень обрадовались, увидев мишку с букетом цветов, и сказали: «У нас есть большая бочка с медом. Мы дадим тебе меда, если ты сможешь с помощью двух сосудов вместимостью 3 л и 5 л налить себе 4л!» Винни-Пух долго думал, но все-таки смог решить задачку. Как он это сделал?

  • Слайд 24

    Как в результате можно получить 4 л? Нужно из 5-литрового сосуда отлить 1 л. А как это сделать? Нужно в 3-литровом сосуде иметь ровно 2 л. Как их получить? – Из 5-литрового сосуда отлить 3 л. Решение лучше и удобнее оформить в виде таблицы: Решение

  • Слайд 25

    Наполняем из бочки 5-литровый сосуд медом (1 шаг). Из 5-литрового сосуда отливаем 3 л в 3-литровый сосуд (2 шаг). Теперь в 5-литровом сосуде осталось 2 литра меда. Выливаем из 3-литрового сосуда мед назад в бочку (3 шаг). Теперь из 5-литрового сосуда выливаем те 2 литра меда в 3-литровый сосуд (4 шаг). Наполняем из бочки 5-литровый сосуд медом (5 шаг). И из 5-литрового сосуда дополняем медом 3-литровый сосуд. Получаем 4 литра меда в 5-литровом сосуде (6 шаг). Задача решена. Поиск решения можно было начать с такого действия: к трем литрам добавить 1 литр. Но тогда решение будет выглядеть следующим образом: Ходы

  • Слайд 26

    Задачи на взвешивание Задачи на взвешивание - достаточно достаточно распространённый вид математических задач. В таких задачах от решающего требуется локализовать отличающийся от остальных предмет по весу за ограниченное число взвешиваний. Поиск решения в этом случае осуществляется путем операций сравнения, правда, не только одиночных элементов, но и групп элементов между собой.

  • Слайд 27

    Задание У Буратино есть 27 золотых монет. Но известно, что Кот Базилио заменил одну монету на фальшивую, а она по весу тяжелее настоящих. Как за три взвешивания на чашечных весах без гирь Буратино определить фальшивую монету?

  • Слайд 28

    Разделим монеты на 3 кучки по 9 монет. Положим на чаши весов первую и вторую кучки; по результату этого взвешивания мы точно узнаем, в какой из кучек находится фальшивка (если весы покажут равенство, то она - в третьей кучке). Теперь, аналогично, разделим выбранную кучку на три части по три монеты, положим на весы две из этих частей и определим, в какой из частей находится фальшивая монета. Наконец, остается из трех монет определить более тяжелую: кладем на чаши весов по 1 монете - фальшивкой является более тяжелая; если же на весах равенство, то фальшивой является третья монета из части. Задача решена. Решение

Посмотреть все слайды

Сообщить об ошибке