Презентация на тему "Мир правильных многогранников" 5 класс

Презентация: Мир правильных многогранников
Включить эффекты
1 из 47
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.9
11 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Мир правильных многогранников" для 5 класса в режиме онлайн с анимацией. Содержит 47 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

Содержание

  • Презентация: Мир правильных многогранников
    Слайд 1

    Мир правильных многогранников. Морина С.А.-учитель математики МБОУ СОШ №5 города-курорта Железноводска Ставропольского края pptcloud.ru

  • Слайд 2

    Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства. Бертран Рассел

  • Слайд 3

    ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер. Гексаэдр Тетраэдр Октаэдр Додекаэдр Икосаэдр

  • Слайд 4

    «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12

  • Слайд 5

    Тетраэдр – представитель правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три. ТЕТРАЭДР

  • Слайд 6

    Куб илигексаэдр – представитель правильных выпуклых многогранников. Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три. КУБ (ГЕКСАЭДР)

  • Слайд 7

    Октаэдр – представитель семейства правильных выпуклых многогранников. Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре. ОКТАЭДР

  • Слайд 8

    Додекаэдр – представитель семейства правильных выпуклых многогранников. Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три. ДОДЕКАЭДР

  • Слайд 9

    Икосаэдр – представитель семейства правильных выпуклых многогранников. Поверхность икосаэдра состоит из двадцати равносторонних треугольников, сходящихся в каждой вершине по пять. ИКОСАЭДР

  • Слайд 10

    Платон

  • Слайд 11

    огонь вода воздух земля вселенная тетраэдр икосаэдр октаэдр гексаэдр додекаэдр

  • Слайд 12

    Модель Солнечной системы Кеплера.

  • Слайд 13

    "Космический кубок" И.Кеплера

  • Слайд 14
  • Слайд 15

    Икосаидро-додекаидровая структура Земли.

  • Слайд 16

    1 группа- доказать, что правильных многогранников существует ровно 5. 2 группа- используя модели многогранников, заполнить данную таблицу и сделать вывод. 3 группа- вывести формулы для нахожденияплощадей поверхности прав. многогранников. 4 и 5 группы- составить развёртки правильных многогранников.

  • Слайд 17

    Вывод: Существует лишь пять выпуклых правильных многогранников – тетраэдр, октаэдр и икосаэдрс треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями 1 группа

  • Слайд 18

    2 группа

  • Слайд 19

    2 группа

  • Слайд 20

    Теорема Эйлера Число вершин плюс число граней минус число рёбер равно двум.             В + Г – Р = 2 2 группа

  • Слайд 21

    Леонард Эйлер(1707 – 1783 гг.)немецкий математик и физик

  • Слайд 22

    3 группа

  • Слайд 23

    4-5 группы Развертки

  • Слайд 24

    Архимедовыми телами называются полуправильные однородные выпуклые многогранники, то есть выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многоугольники нескольких типов. Архимедовы тела

  • Слайд 25

    Архимедовы тела

  • Слайд 26

    Французский математик Пуансо в 1810 году построил четыре правильных звездчатых многогранника: малый звездчатый додекаэдр, большой звездчатый додекаэдр, большой додекаэдр и большой икосаэдр. Два из них знал И. Кеплер (1571 – 1630 гг.). В 1812 году французский математик О. Коши доказал, что кроме пяти «платоновых тел» и четырех «тел Пуансо» больше нет правильных многогранников.

  • Слайд 27

    Малый звездчатый додекаэдр Большой звездчатый додекаэдр Большой икосаэдр Большой додекаэдр

  • Слайд 28

    Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэррол

  • Слайд 29

    Химия

  • Слайд 30

    Кристаллы

  • Слайд 31

    Кристаллы белого фосфора образованы молекулами Р4 . Такая молекула имеет вид тетраэдра. Фосфорноватистая кислота Н 3РО2.

  • Слайд 32

    Молекулы зеркальных изомеров молочной кислоты.

  • Слайд 33
  • Слайд 34

    Строение молекулы метана .

  • Слайд 35

    Строение решетки алмаза.

  • Слайд 36

    Кристаллы поваренной соли.

  • Слайд 37
  • Слайд 38

    Биология

  • Слайд 39

    Вирус полиомиелита имеет форму додекаэдра.

  • Слайд 40

    Феодария (Circjgjnia icosahtdra)

  • Слайд 41

    Искусство «Тайняя вечеря» С.Дали

  • Слайд 42

    ГРАВЮРА ГОЛАНДСКОГО ХУДОЖНИКА МАУРИЦА КОРНЕЛИУСА ЭШЕРА «СИЛЫ ГРАВИТАЦИИ»

  • Слайд 43
  • Слайд 44

    Украшения

  • Слайд 45

    Правильная форма алмаза.

  • Слайд 46

    Леонардо да Винчи любил изготовлять из дерева каркасы правильных многогранников и преподносить их в виде подарка различным знаменитостям.

  • Слайд 47

    Интернет- источники: Иллюстрации http://www.techgate.ru/wallpicagen.php?image=6_423 http://dic.academic.ru/dic.nsf/enc_colier/6340/МНОГОГРАННИК http://s53.radikal.ru/i140/0910/01/d6a003cbe3ba.jpg http://denis-gorskin.narod.ru/algebra-2009/gipotez.html http://900igr.net/fotografii/geometrija/Mnogogrannik-2/009-Pravilnye-mnogogranniki-i-priroda.html http://900igr.net/fotografii/geometrija/Mnogogrannik-2/008-Salvador-Dali.html http://900igr.net/fotografii/geometrija/Mnogogrannik-2/006-Kosmicheskij-kubok-Keplera.html http://www.metodikinz.ru/goods/?page=.math.platon&dept=1 http://luarsoll.narod.ru/Biseropletenie.html http://festival.1september.ru/articles/594729/ http://files.school-collection.edu.ru/dlrstore/ce2bd098-2ee2-9c4b-025f-2ce51c2f5fa5/7257_001.gif http://www.referat-web.ru/content/referat/physics/img5717.jpg http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch3_2-11/img006.gifhttp://ido.tsu.ru/schools/chem/data/res/neorg/uchpos/text/img/g3_7_10.gif http://www.krugosvet.ru/images/1011107_6739_003.gif http://www.mnedrug.ru/index_1.php http://znaniya-sila.narod.ru/people/004_00.htmhttp://znaniya-sila.narod.ru/people/004_00.htm http://photo.peoples.ru/science/mathematics/louis_poinsot/poinsot_1.html http://nl.wikipedia.org/wiki/Johannes_Kepler http://www.sciencephoto.com/media/224346/enlarge http://www.teor-meh.ru/bio/ik/koshi_ogyusten_lui.html http://www.videoscan.ru/page/712

Посмотреть все слайды

Конспект

Урок геометрии в 11 классе по теме:

«Правильные многогранники».

Морина Светлана Алексеевна - учитель математики

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №5 города-курорта Железноводска Ставропольского края

п.Иноземцево

г.Железноводск

Ставропольский край

Урок по теме: «Правильные многогранники».

Тип урока: изучение нового материала.

Продолжительность урока: 2 урока по 45 минут.

Цель урока: создание условий для формирования понятия правильного многогранника, полуправильных и звездчатых многогранников, знаний о свойствах многогранников, знаний из истории теории многогранников, представлений о связи математики с другими науками.

Задачи урока:

Формировать пространственные представления, математическую культуру, культуру общения.

Развивать практические навыки учащихся по изготовлению правильных, полуправильных, звездчатых многогранников.

Развивать умения наблюдать, умения рассуждать по аналогии, интерес к предмету через использование информационных технологий и осуществление межпредметных связей.

Воспитывать  общетрудовые умения, графическую культуру, умения работать в группе.

Оборудование: компьютер, проектор, презентация (приложение 1), карточки (приложение 2), модели правильных многогранников, компьютеры, принтер, компьютерный тест (приложение3).

Подготовительная работа: учащиеся готовят рефераты и сообщения на 5-6 минут по предложенным темам под руководством учителей математики, физики, химии, биологии, МХК.

Ход урока.

1.Орг. момент.

2. Целеполагание (2 минуты). Слайд 1-2

Учитель: Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести тему "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. Сегодня на уроке мы узнаем и увидим много интересного, нам предстоит ответить на такие вопросы, как, например: Какие многогранники называются правильными? Сколько их существует? Что такое Эйлерова характеристика? Какие тела носят название тел Кеплера- Пуансо? И многие - многие другие… И, наконец: где, зачем и для чего нам нужны многогранники? Может быть, в жизни можно обойтись и без них? Данный материал пригодится нам при изучении темы “Объемы многогранников» и при решении задач на комбинацию геометрических тел.

3. Изучение нового материала.

Объяснение нового материала учителем. (5 минут). Слайд 3-9.

Учитель: Мне хотелось бы начать со слов Бертрана Рассела: “Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства”. Название “правильные” идет от античных времен, когда стремились найти гармонию, правильность, совершенство в природе и человеке. Правильные многоугольники – это многоугольники, у которых все стороны и все углы равны, правильные многогранники – это многогранники, ограниченные правильными и одинаковыми многоугольниками.

ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер.

ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.

ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов

ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.

ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.

ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

«эдра» - грань

«тетра» - 4

«гекса» - 6

«окта» - 8

«икоса» - 20

«додека» - 12

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, 13-я книга знаменитых “Начал” Евклида. Как говорилось раньше, эти многогранники часто называют также платоновыми телами – в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном, четыре из них олицетворяли 4 стихии: тетраэдр – огонь, куб – землю, икосаэдр – воду, октаэдр – воздух, пятый же многогранник, додекаэдр, символизировал все мироздание – его по-латыни стали называть quinta essentia (квинта эссенция), означающее все самое главное, основное, истинную сущность чего-либо.

Сообщение ученика по теме: «Правильные многогранники в философской картине мира Платона» (6 минут). Слайд 10-11.

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.).

Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.

Это была одна из первых попыток ввести в науку идею систематизации.

Учитель: А теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 – 1630).

Доклад ученика по теме: «Кубок Кеплера» (6 минут). Слайд 12-14.

Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.

В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних расстояний от Солнца.

Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.

Доклад учащегося по теме: «Икосаэдро-додекаэдровая структура Земли» (6 минут). Слайд 15

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли (рис.7). Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Учитель: А сейчас от научных гипотез перейдём к научным фактам.

4. Практическая работа (15 минут). Слайд 16.

Работа в группах. Деление на группы производится заранее, учитывая уровень подготовки детей, так же их желание. Задания дифференцированные. Более подготовленные учащиеся входят в 1 и 3 группу, 4-5 группа - ученики, которые хорошо работают в графическом редакторе. Можно разделить между 4 и 5 группой многогранники (2 одной группе и 3 другой). Развертки, которые получатся, необходимо распечатать учащимся для выполнения дом. задания.

1 группа - доказать, что правильных многогранников 5.

2 группа - заполнить таблицы и сделать вывод.(модели).

3 группа- вывести формулы полной поверхности правильных многогранников.

4-5 группы - нарисовать развертки (на компьютере).

Отчет групп о работе (15 минут). Слайд 17-23.

Один представитель группы отчитывается о результатах у доски (3-4 минуты для каждой группы).

Учащиеся делают соответствующие записи в тетради.

- формулы площадей;

- теорему Эйлера.

6. Дополнительные сведения.

Учитель: Кроме пяти правильных многогранников существуют полуправильные многогранники, тела Архимеда.

Доклад ученика по теме: «Архимедовы тела» (5 минут). Слайд 24-27.

Архимедовы тела обладают свойством: любые две вершины можно совместить так, что все грани многогранника попарно совпадут друг с другом.

Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20.Отчет на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр).

Учитель: Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

В глубины каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? Слайд 28.

7. Доклады учащихся (сопровождаются компьютерными презентациями) (15 минут). Слайд 29- 46. (Доклады оценивают учителя химии, биологии, МХК).

Правильные многогранники и химия. (5 минут)

Правильные многогранники в биологии.(5 минут)

Искусство и правильные многогранники. (3 минуты)

Ювелирные украшения.(2 минуты)

9. Рефлексия (7-8 минут).

(При наличии времени учитель проводит компьютерное тестирование - рефлексия усвоения учебного материала, если времени мало, то только рефлексию учебной деятельности, а на следующем уроке - тест.)

Рефлексия усвоения учащимися учебного материала.

Тест первичного закрепления. (учащиеся занимают места за компьютерами по 2, можно задействовать компьютер учителя, по необходимости ноутбуки)

Рефлексия деятельности учащихся на уроке.

-Что понравилось на уроке?

-Какой материал был наиболее интересен?

- Оцените свою работу на уроке: плохо работал, хорошо, отлично. Поднимите руки, кто работал плохо? Почему? И т.д.

- Связь геометрии, с какими науками вы увидели сегодня на уроке?

-В каких еще областях деятельности можно встретиться с правильными многогранниками?

- Как вы думаете, пригодятся ли вам знания данной темы в вашей будущей профессии?

8. Подведение итогов. Выставление оценок (2 минуты).

10. Домашнее задание.

Изготовить модели 5 правильных многогранников. По желанию - полуправильных и звездчатых (дополнительная оценка). (Учащимся можно распечатать развертки многогранников, которые нарисовали 4 и5 группы)

Примечание: Уроку предшествует очень большая подготовительная работа. Некоторые учащиеся получают задание подготовить рефераты и сообщения по конкретным темам геометрии, химии, биологии, МХК. При этом учитываются индивидуальные особенности детей, их профессиональные наклонности. Учителя-предметники проверяют рефераты и оценивают работу учащихся. Таким образом, оценки учащиеся могут получить не только по геометрии за работу на уроке, но и по другим предметам за подготовку реферата. Во время практической работы и после представления сообщений, рекомендуется выключать проектор. На втором уроке следует сделать динамическую паузу. Учитель сам должен определить её время проведения. Это могут быть упражнения для глаз (без использования компьютера) и несколько двигательных упражнений.

Урок геометрии в 11 классе по теме:

«Правильные многогранники».

Морина Светлана Алексеевна - учитель математики

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №5 города-курорта Железноводска Ставропольского края

п.Иноземцево

г.Железноводск

Ставропольский край

Урок по теме: «Правильные многогранники».

Тип урока: изучение нового материала.

Продолжительность урока: 2 урока по 45 минут.

Цель урока: создание условий для формирования понятия правильного многогранника, полуправильных и звездчатых многогранников, знаний о свойствах многогранников, знаний из истории теории многогранников, представлений о связи математики с другими науками.

Задачи урока:

Формировать пространственные представления, математическую культуру, культуру общения.

Развивать практические навыки учащихся по изготовлению правильных, полуправильных, звездчатых многогранников.

Развивать умения наблюдать, умения рассуждать по аналогии, интерес к предмету через использование информационных технологий и осуществление межпредметных связей.

Воспитывать  общетрудовые умения, графическую культуру, умения работать в группе.

Оборудование: компьютер, проектор, презентация (приложение 1), карточки (приложение 2), модели правильных многогранников, компьютеры, принтер, компьютерный тест (приложение3).

Подготовительная работа: учащиеся готовят рефераты и сообщения на 5-6 минут по предложенным темам под руководством учителей математики, физики, химии, биологии, МХК.

Ход урока.

1.Орг. момент.

2. Целеполагание (2 минуты). Слайд 1-2

Учитель: Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести тему "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. Сегодня на уроке мы узнаем и увидим много интересного, нам предстоит ответить на такие вопросы, как, например: Какие многогранники называются правильными? Сколько их существует? Что такое Эйлерова характеристика? Какие тела носят название тел Кеплера- Пуансо? И многие - многие другие… И, наконец: где, зачем и для чего нам нужны многогранники? Может быть, в жизни можно обойтись и без них? Данный материал пригодится нам при изучении темы “Объемы многогранников» и при решении задач на комбинацию геометрических тел.

3. Изучение нового материала.

Объяснение нового материала учителем. (5 минут). Слайд 3-9.

Учитель: Мне хотелось бы начать со слов Бертрана Рассела: “Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства”. Название “правильные” идет от античных времен, когда стремились найти гармонию, правильность, совершенство в природе и человеке. Правильные многоугольники – это многоугольники, у которых все стороны и все углы равны, правильные многогранники – это многогранники, ограниченные правильными и одинаковыми многоугольниками.

ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер.

ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.

ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов

ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.

ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.

ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

«эдра» - грань

«тетра» - 4

«гекса» - 6

«окта» - 8

«икоса» - 20

«додека» - 12

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, 13-я книга знаменитых “Начал” Евклида. Как говорилось раньше, эти многогранники часто называют также платоновыми телами – в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном, четыре из них олицетворяли 4 стихии: тетраэдр – огонь, куб – землю, икосаэдр – воду, октаэдр – воздух, пятый же многогранник, додекаэдр, символизировал все мироздание – его по-латыни стали называть quinta essentia (квинта эссенция), означающее все самое главное, основное, истинную сущность чего-либо.

Сообщение ученика по теме: «Правильные многогранники в философской картине мира Платона» (6 минут). Слайд 10-11.

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.).

Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.

Это была одна из первых попыток ввести в науку идею систематизации.

Учитель: А теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 – 1630).

Доклад ученика по теме: «Кубок Кеплера» (6 минут). Слайд 12-14.

Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.

В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних расстояний от Солнца.

Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.

Доклад учащегося по теме: «Икосаэдро-додекаэдровая структура Земли» (6 минут). Слайд 15

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли (рис.7). Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Учитель: А сейчас от научных гипотез перейдём к научным фактам.

4. Практическая работа (15 минут). Слайд 16.

Работа в группах. Деление на группы производится заранее, учитывая уровень подготовки детей, так же их желание. Задания дифференцированные. Более подготовленные учащиеся входят в 1 и 3 группу, 4-5 группа - ученики, которые хорошо работают в графическом редакторе. Можно разделить между 4 и 5 группой многогранники (2 одной группе и 3 другой). Развертки, которые получатся, необходимо распечатать учащимся для выполнения дом. задания.

1 группа - доказать, что правильных многогранников 5.

2 группа - заполнить таблицы и сделать вывод.(модели).

3 группа- вывести формулы полной поверхности правильных многогранников.

4-5 группы - нарисовать развертки (на компьютере).

Отчет групп о работе (15 минут). Слайд 17-23.

Один представитель группы отчитывается о результатах у доски (3-4 минуты для каждой группы).

Учащиеся делают соответствующие записи в тетради.

- формулы площадей;

- теорему Эйлера.

6. Дополнительные сведения.

Учитель: Кроме пяти правильных многогранников существуют полуправильные многогранники, тела Архимеда.

Доклад ученика по теме: «Архимедовы тела» (5 минут). Слайд 24-27.

Архимедовы тела обладают свойством: любые две вершины можно совместить так, что все грани многогранника попарно совпадут друг с другом.

Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20.Отчет на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр).

Учитель: Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

В глубины каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? Слайд 28.

7. Доклады учащихся (сопровождаются компьютерными презентациями) (15 минут). Слайд 29- 46. (Доклады оценивают учителя химии, биологии, МХК).

Правильные многогранники и химия. (5 минут)

Правильные многогранники в биологии.(5 минут)

Искусство и правильные многогранники. (3 минуты)

Ювелирные украшения.(2 минуты)

9. Рефлексия (7-8 минут).

(При наличии времени учитель проводит компьютерное тестирование - рефлексия усвоения учебного материала, если времени мало, то только рефлексию учебной деятельности, а на следующем уроке - тест.)

Рефлексия усвоения учащимися учебного материала.

Тест первичного закрепления. (учащиеся занимают места за компьютерами по 2, можно задействовать компьютер учителя, по необходимости ноутбуки)

Рефлексия деятельности учащихся на уроке.

-Что понравилось на уроке?

-Какой материал был наиболее интересен?

- Оцените свою работу на уроке: плохо работал, хорошо, отлично. Поднимите руки, кто работал плохо? Почему? И т.д.

- Связь геометрии, с какими науками вы увидели сегодня на уроке?

-В каких еще областях деятельности можно встретиться с правильными многогранниками?

- Как вы думаете, пригодятся ли вам знания данной темы в вашей будущей профессии?

8. Подведение итогов. Выставление оценок (2 минуты).

10. Домашнее задание.

Изготовить модели 5 правильных многогранников. По желанию - полуправильных и звездчатых (дополнительная оценка). (Учащимся можно распечатать развертки многогранников, которые нарисовали 4 и5 группы)

Примечание: Уроку предшествует очень большая подготовительная работа. Некоторые учащиеся получают задание подготовить рефераты и сообщения по конкретным темам геометрии, химии, биологии, МХК. При этом учитываются индивидуальные особенности детей, их профессиональные наклонности. Учителя-предметники проверяют рефераты и оценивают работу учащихся. Таким образом, оценки учащиеся могут получить не только по геометрии за работу на уроке, но и по другим предметам за подготовку реферата. Во время практической работы и после представления сообщений, рекомендуется выключать проектор. На втором уроке следует сделать динамическую паузу. Учитель сам должен определить её время проведения. Это могут быть упражнения для глаз (без использования компьютера) и несколько двигательных упражнений.

Скачать конспект

Сообщить об ошибке