Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.
Добавить свой комментарий
Аннотация к презентации
Посмотреть презентацию на тему "Мир правильных многогранников" для 5 класса в режиме онлайн с анимацией. Содержит 47 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.
Мир правильных
многогранников.
Морина С.А.-учитель математики
МБОУ СОШ №5 города-курорта Железноводска
Ставропольского края
pptcloud.ru
Слайд 2
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства.
Бертран Рассел
Слайд 3
ПРАВИЛЬНЫЙ МНОГОГРАННИК-
выпуклый многогранник,
грани которого являются правильными
многоугольниками с одним и тем же числом сторон
и в каждой вершине которого сходится одно и то же число ребер.
Гексаэдр
Тетраэдр
Октаэдр
Додекаэдр
Икосаэдр
Тетраэдр – представитель правильных выпуклых многогранников.
Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три.
ТЕТРАЭДР
Слайд 6
Куб илигексаэдр – представитель правильных выпуклых многогранников.
Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три.
КУБ (ГЕКСАЭДР)
Слайд 7
Октаэдр – представитель семейства правильных выпуклых многогранников.
Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре.
ОКТАЭДР
Слайд 8
Додекаэдр – представитель
семейства правильных выпуклых многогранников.
Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три.
ДОДЕКАЭДР
Слайд 9
Икосаэдр – представитель семейства правильных выпуклых многогранников.
Поверхность икосаэдра состоит из двадцати равносторонних треугольников, сходящихся в каждой вершине по пять.
ИКОСАЭДР
Слайд 10
Платон
Слайд 11
огонь
вода
воздух
земля
вселенная
тетраэдр
икосаэдр
октаэдр
гексаэдр
додекаэдр
Слайд 12
Модель Солнечной
системы Кеплера.
Слайд 13
"Космический кубок"
И.Кеплера
Слайд 14
Слайд 15
Икосаидро-додекаидровая
структура Земли.
Слайд 16
1 группа- доказать, что правильных многогранников
существует ровно 5.
2 группа- используя модели многогранников,
заполнить данную таблицу и сделать вывод.
3 группа- вывести формулы для нахожденияплощадей
поверхности прав. многогранников.
4 и 5 группы- составить развёртки правильных
многогранников.
Слайд 17
Вывод:
Существует лишь пять выпуклых правильных многогранников –
тетраэдр, октаэдр и икосаэдрс треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями
1 группа
Слайд 18
2 группа
Слайд 19
2 группа
Слайд 20
Теорема Эйлера
Число вершин плюс число граней минус число рёбер равно двум.
В + Г – Р = 2
2 группа
Слайд 21
Леонард Эйлер(1707 – 1783 гг.)немецкий математик и физик
Слайд 22
3 группа
Слайд 23
4-5 группы
Развертки
Слайд 24
Архимедовыми телами называются полуправильные однородные выпуклые многогранники, то есть выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многоугольники нескольких типов.
Архимедовы тела
Слайд 25
Архимедовы
тела
Слайд 26
Французский математик Пуансо в 1810 году построил четыре правильных звездчатых многогранника: малый звездчатый додекаэдр, большой звездчатый додекаэдр, большой додекаэдр и большой икосаэдр.
Два из них знал
И. Кеплер (1571 – 1630 гг.).
В 1812 году французский математик О. Коши
доказал, что кроме пяти «платоновых тел» и
четырех «тел Пуансо» больше нет
правильных многогранников.
Слайд 27
Малый звездчатый
додекаэдр
Большой звездчатый
додекаэдр
Большой икосаэдр
Большой додекаэдр
Слайд 28
Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук.
Л. Кэррол
Слайд 29
Химия
Слайд 30
Кристаллы
Слайд 31
Кристаллы белого фосфора образованы молекулами Р4 . Такая молекула имеет вид тетраэдра.
Фосфорноватистая кислота
Н 3РО2.
Слайд 32
Молекулы зеркальных изомеров молочной кислоты.
Слайд 33
Слайд 34
Строение молекулы
метана .
Слайд 35
Строение решетки алмаза.
Слайд 36
Кристаллы поваренной соли.
Слайд 37
Слайд 38
Биология
Слайд 39
Вирус полиомиелита имеет форму додекаэдра.
Слайд 40
Феодария
(Circjgjnia icosahtdra)
Слайд 41
Искусство
«Тайняя вечеря» С.Дали
Слайд 42
ГРАВЮРА ГОЛАНДСКОГО ХУДОЖНИКА МАУРИЦА КОРНЕЛИУСА ЭШЕРА «СИЛЫ ГРАВИТАЦИИ»
Слайд 43
Слайд 44
Украшения
Слайд 45
Правильная форма алмаза.
Слайд 46
Леонардо да Винчи любил изготовлять из дерева каркасы правильных многогранников и преподносить их в виде подарка различным знаменитостям.
Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №5 города-курорта Железноводска Ставропольского края
п.Иноземцево
г.Железноводск
Ставропольский край
Урок по теме: «Правильные многогранники».
Тип урока: изучение нового материала.
Продолжительность урока: 2 урока по 45 минут.
Цель урока: создание условий для формирования понятия правильного многогранника, полуправильных и звездчатых многогранников, знаний о свойствах многогранников, знаний из истории теории многогранников, представлений о связи математики с другими науками.
Задачи урока:
Формировать пространственные представления, математическую культуру, культуру общения.
Развивать практические навыки учащихся по изготовлению правильных, полуправильных, звездчатых многогранников.
Развивать умения наблюдать, умения рассуждать по аналогии, интерес к предмету через использование информационных технологий и осуществление межпредметных связей.
Воспитывать общетрудовые умения, графическую культуру, умения работать в группе.
Оборудование: компьютер, проектор, презентация (приложение 1), карточки (приложение 2), модели правильных многогранников, компьютеры, принтер, компьютерный тест (приложение3).
Подготовительная работа: учащиеся готовят рефераты и сообщения на 5-6 минут по предложенным темам под руководством учителей математики, физики, химии, биологии, МХК.
Ход урока.
1.Орг. момент.
2. Целеполагание (2 минуты). Слайд 1-2
Учитель: Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести тему "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. Сегодня на уроке мы узнаем и увидим много интересного, нам предстоит ответить на такие вопросы, как, например: Какие многогранники называются правильными? Сколько их существует? Что такое Эйлерова характеристика? Какие тела носят название тел Кеплера- Пуансо? И многие - многие другие… И, наконец: где, зачем и для чего нам нужны многогранники? Может быть, в жизни можно обойтись и без них? Данный материал пригодится нам при изучении темы “Объемы многогранников» и при решении задач на комбинацию геометрических тел.
3. Изучение нового материала.
Объяснение нового материала учителем. (5 минут). Слайд 3-9.
Учитель: Мне хотелось бы начать со слов Бертрана Рассела: “Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства”. Название “правильные” идет от античных времен, когда стремились найти гармонию, правильность, совершенство в природе и человеке. Правильные многоугольники – это многоугольники, у которых все стороны и все углы равны, правильные многогранники – это многогранники, ограниченные правильными и одинаковыми многоугольниками.
ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер.
ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.
ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов
ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.
ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.
ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:
«эдра» - грань
«тетра» - 4
«гекса» - 6
«окта» - 8
«икоса» - 20
«додека» - 12
Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, 13-я книга знаменитых “Начал” Евклида. Как говорилось раньше, эти многогранники часто называют также платоновыми телами – в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном, четыре из них олицетворяли 4 стихии: тетраэдр – огонь, куб – землю, икосаэдр – воду, октаэдр – воздух, пятый же многогранник, додекаэдр, символизировал все мироздание – его по-латыни стали называть quinta essentia (квинта эссенция), означающее все самое главное, основное, истинную сущность чего-либо.
Сообщение ученика по теме: «Правильные многогранники в философской картине мира Платона» (6 минут). Слайд 10-11.
Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.).
Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.
Это была одна из первых попыток ввести в науку идею систематизации.
Учитель: А теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 – 1630).
Доклад ученика по теме: «Кубок Кеплера» (6 минут). Слайд 12-14.
Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.
В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних расстояний от Солнца.
Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.
Доклад учащегося по теме: «Икосаэдро-додекаэдровая структура Земли» (6 минут). Слайд 15
Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли (рис.7). Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.
Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.
Учитель: А сейчас от научных гипотез перейдём к научным фактам.
4. Практическая работа (15 минут). Слайд 16.
Работа в группах. Деление на группы производится заранее, учитывая уровень подготовки детей, так же их желание. Задания дифференцированные. Более подготовленные учащиеся входят в 1 и 3 группу, 4-5 группа - ученики, которые хорошо работают в графическом редакторе. Можно разделить между 4 и 5 группой многогранники (2 одной группе и 3 другой). Развертки, которые получатся, необходимо распечатать учащимся для выполнения дом. задания.
1 группа - доказать, что правильных многогранников 5.
2 группа - заполнить таблицы и сделать вывод.(модели).
3 группа- вывести формулы полной поверхности правильных многогранников.
4-5 группы - нарисовать развертки (на компьютере).
Отчет групп о работе (15 минут). Слайд 17-23.
Один представитель группы отчитывается о результатах у доски (3-4 минуты для каждой группы).
Учащиеся делают соответствующие записи в тетради.
- формулы площадей;
- теорему Эйлера.
6. Дополнительные сведения.
Учитель: Кроме пяти правильных многогранников существуют полуправильные многогранники, тела Архимеда.
Доклад ученика по теме: «Архимедовы тела» (5 минут). Слайд 24-27.
Архимедовы тела обладают свойством: любые две вершины можно совместить так, что все грани многогранника попарно совпадут друг с другом.
Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20.Отчет на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр).
Учитель: Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".
В глубины каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? Слайд 28.
(При наличии времени учитель проводит компьютерное тестирование - рефлексия усвоения учебного материала, если времени мало, то только рефлексию учебной деятельности, а на следующем уроке - тест.)
Рефлексия усвоения учащимися учебного материала.
Тест первичного закрепления. (учащиеся занимают места за компьютерами по 2, можно задействовать компьютер учителя, по необходимости ноутбуки)
Рефлексия деятельности учащихся на уроке.
-Что понравилось на уроке?
-Какой материал был наиболее интересен?
- Оцените свою работу на уроке: плохо работал, хорошо, отлично. Поднимите руки, кто работал плохо? Почему? И т.д.
- Связь геометрии, с какими науками вы увидели сегодня на уроке?
-В каких еще областях деятельности можно встретиться с правильными многогранниками?
- Как вы думаете, пригодятся ли вам знания данной темы в вашей будущей профессии?
Изготовить модели 5 правильных многогранников. По желанию - полуправильных и звездчатых (дополнительная оценка). (Учащимся можно распечатать развертки многогранников, которые нарисовали 4 и5 группы)
Примечание: Уроку предшествует очень большая подготовительная работа. Некоторые учащиеся получают задание подготовить рефераты и сообщения по конкретным темам геометрии, химии, биологии, МХК. При этом учитываются индивидуальные особенности детей, их профессиональные наклонности. Учителя-предметники проверяют рефераты и оценивают работу учащихся. Таким образом, оценки учащиеся могут получить не только по геометрии за работу на уроке, но и по другим предметам за подготовку реферата. Во время практической работы и после представления сообщений, рекомендуется выключать проектор. На втором уроке следует сделать динамическую паузу. Учитель сам должен определить её время проведения. Это могут быть упражнения для глаз (без использования компьютера) и несколько двигательных упражнений.
Урок геометрии в 11 классе по теме:
«Правильные многогранники».
Морина Светлана Алексеевна - учитель математики
Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №5 города-курорта Железноводска Ставропольского края
п.Иноземцево
г.Железноводск
Ставропольский край
Урок по теме: «Правильные многогранники».
Тип урока: изучение нового материала.
Продолжительность урока: 2 урока по 45 минут.
Цель урока: создание условий для формирования понятия правильного многогранника, полуправильных и звездчатых многогранников, знаний о свойствах многогранников, знаний из истории теории многогранников, представлений о связи математики с другими науками.
Задачи урока:
Формировать пространственные представления, математическую культуру, культуру общения.
Развивать практические навыки учащихся по изготовлению правильных, полуправильных, звездчатых многогранников.
Развивать умения наблюдать, умения рассуждать по аналогии, интерес к предмету через использование информационных технологий и осуществление межпредметных связей.
Воспитывать общетрудовые умения, графическую культуру, умения работать в группе.
Оборудование: компьютер, проектор, презентация (приложение 1), карточки (приложение 2), модели правильных многогранников, компьютеры, принтер, компьютерный тест (приложение3).
Подготовительная работа: учащиеся готовят рефераты и сообщения на 5-6 минут по предложенным темам под руководством учителей математики, физики, химии, биологии, МХК.
Ход урока.
1.Орг. момент.
2. Целеполагание (2 минуты). Слайд 1-2
Учитель: Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести тему "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. Сегодня на уроке мы узнаем и увидим много интересного, нам предстоит ответить на такие вопросы, как, например: Какие многогранники называются правильными? Сколько их существует? Что такое Эйлерова характеристика? Какие тела носят название тел Кеплера- Пуансо? И многие - многие другие… И, наконец: где, зачем и для чего нам нужны многогранники? Может быть, в жизни можно обойтись и без них? Данный материал пригодится нам при изучении темы “Объемы многогранников» и при решении задач на комбинацию геометрических тел.
3. Изучение нового материала.
Объяснение нового материала учителем. (5 минут). Слайд 3-9.
Учитель: Мне хотелось бы начать со слов Бертрана Рассела: “Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства”. Название “правильные” идет от античных времен, когда стремились найти гармонию, правильность, совершенство в природе и человеке. Правильные многоугольники – это многоугольники, у которых все стороны и все углы равны, правильные многогранники – это многогранники, ограниченные правильными и одинаковыми многоугольниками.
ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер.
ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.
ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов
ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.
ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.
ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:
«эдра» - грань
«тетра» - 4
«гекса» - 6
«окта» - 8
«икоса» - 20
«додека» - 12
Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, 13-я книга знаменитых “Начал” Евклида. Как говорилось раньше, эти многогранники часто называют также платоновыми телами – в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном, четыре из них олицетворяли 4 стихии: тетраэдр – огонь, куб – землю, икосаэдр – воду, октаэдр – воздух, пятый же многогранник, додекаэдр, символизировал все мироздание – его по-латыни стали называть quinta essentia (квинта эссенция), означающее все самое главное, основное, истинную сущность чего-либо.
Сообщение ученика по теме: «Правильные многогранники в философской картине мира Платона» (6 минут). Слайд 10-11.
Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.).
Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.
Это была одна из первых попыток ввести в науку идею систематизации.
Учитель: А теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 – 1630).
Доклад ученика по теме: «Кубок Кеплера» (6 минут). Слайд 12-14.
Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.
В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних расстояний от Солнца.
Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.
Доклад учащегося по теме: «Икосаэдро-додекаэдровая структура Земли» (6 минут). Слайд 15
Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли (рис.7). Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.
Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.
Учитель: А сейчас от научных гипотез перейдём к научным фактам.
4. Практическая работа (15 минут). Слайд 16.
Работа в группах. Деление на группы производится заранее, учитывая уровень подготовки детей, так же их желание. Задания дифференцированные. Более подготовленные учащиеся входят в 1 и 3 группу, 4-5 группа - ученики, которые хорошо работают в графическом редакторе. Можно разделить между 4 и 5 группой многогранники (2 одной группе и 3 другой). Развертки, которые получатся, необходимо распечатать учащимся для выполнения дом. задания.
1 группа - доказать, что правильных многогранников 5.
2 группа - заполнить таблицы и сделать вывод.(модели).
3 группа- вывести формулы полной поверхности правильных многогранников.
4-5 группы - нарисовать развертки (на компьютере).
Отчет групп о работе (15 минут). Слайд 17-23.
Один представитель группы отчитывается о результатах у доски (3-4 минуты для каждой группы).
Учащиеся делают соответствующие записи в тетради.
- формулы площадей;
- теорему Эйлера.
6. Дополнительные сведения.
Учитель: Кроме пяти правильных многогранников существуют полуправильные многогранники, тела Архимеда.
Доклад ученика по теме: «Архимедовы тела» (5 минут). Слайд 24-27.
Архимедовы тела обладают свойством: любые две вершины можно совместить так, что все грани многогранника попарно совпадут друг с другом.
Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20.Отчет на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр).
Учитель: Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".
В глубины каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? Слайд 28.
(При наличии времени учитель проводит компьютерное тестирование - рефлексия усвоения учебного материала, если времени мало, то только рефлексию учебной деятельности, а на следующем уроке - тест.)
Рефлексия усвоения учащимися учебного материала.
Тест первичного закрепления. (учащиеся занимают места за компьютерами по 2, можно задействовать компьютер учителя, по необходимости ноутбуки)
Рефлексия деятельности учащихся на уроке.
-Что понравилось на уроке?
-Какой материал был наиболее интересен?
- Оцените свою работу на уроке: плохо работал, хорошо, отлично. Поднимите руки, кто работал плохо? Почему? И т.д.
- Связь геометрии, с какими науками вы увидели сегодня на уроке?
-В каких еще областях деятельности можно встретиться с правильными многогранниками?
- Как вы думаете, пригодятся ли вам знания данной темы в вашей будущей профессии?
Изготовить модели 5 правильных многогранников. По желанию - полуправильных и звездчатых (дополнительная оценка). (Учащимся можно распечатать развертки многогранников, которые нарисовали 4 и5 группы)
Примечание: Уроку предшествует очень большая подготовительная работа. Некоторые учащиеся получают задание подготовить рефераты и сообщения по конкретным темам геометрии, химии, биологии, МХК. При этом учитываются индивидуальные особенности детей, их профессиональные наклонности. Учителя-предметники проверяют рефераты и оценивают работу учащихся. Таким образом, оценки учащиеся могут получить не только по геометрии за работу на уроке, но и по другим предметам за подготовку реферата. Во время практической работы и после представления сообщений, рекомендуется выключать проектор. На втором уроке следует сделать динамическую паузу. Учитель сам должен определить её время проведения. Это могут быть упражнения для глаз (без использования компьютера) и несколько двигательных упражнений.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.