Содержание
-
Арифметическая и геометрическая прогрессии в древности
Работу выполнили Васягина Т. И Бондарь О.
-
Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо теоретических сведений о прогрессии в них не приводится , а даются лишь указания ,какие действия надо выполнять для получения ответа на вопрос задачи. Вот пример задачи из египетского папируса АХМЕСА : «Пусть тебе сказано : раздели 10 мер ячменя между 10 человеками , разность же между каждым человеком и его соседом равна 1/8 меры.»
-
(Начало нашей эры ) Индийский царь Шерам позвал к себе изобретателя шахматной игры , своего подданного СЕТУ , чтобы наградить его за остроумную выдумку . СЕТА , издеваясь над царем , потребовал за первую клетку шахматной доски 1 зерно , за вторую- 2зерна , за третью- 4 зерна и т.д. Обрадованный царь приказал выдать такую ,,скромную,, награду. Однако оказалось , что царь не в состоянии выполнить желание СЕТЫ , так как нужно было выдать количество зерен равное сумме геометрической прогрессии 1,2, ЕЕ сумма равна Такое количество зерен пшеницы можно собрать лишь с площади в 2000 раз большей поверхности ЗЕМЛИ.
-
Первые теоретические сведения, связанные с прогрессиями, дошли до нас в документах Древней Греции. В Древнем Египте в V в до н.э. греки знали прогрессии и их суммы:1+2+3+…+n = =2+4+6+…+2n = n·(n+1). Некоторые формулы, относящиеся к прогрессиям, были известны китайским и индийским ученым (V в.).
-
Прогрессии древней Греции
Первые теоретические сведения, связанные с прогрессиями, дошли до нас в документах Древней Греции. В Древнем Египте в V в до н.э. греки знали прогрессии и их суммы:1+2+3+…+n = =2+4+6+…+2n = n·(n+1). Некоторые формулы, относящиеся к прогрессиям, были известны китайским и индийским ученым (V в.) Для решения задач геометрии и механики Архимед вывел формулу суммы квадратов первых n натуральных чисел:
-
Первые представления об арифметической и геометрической прогрессиях были еще у древних народов. Одна из самых древних задач на прогрессии записана в египетском папирусе Ринда, найденном в 1872 году в тайниках одной из пирамид. Ширина найденного папируса 33 см , длина 544 см. Написан папирус около 4000 лет назад . Сейчас этот папирус хранится в Лондоне. Он был приобретен английским собирателем предметов старины Риндом и поэтому называется папирусом Ринда .
-
-
-
КОНЕЦ!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.