Содержание
-
Пирамиды.
-
-
Многопрофильная гимназия №79 ОТКРЫТЫЙ УРОК «ГЕОМЕТРИЧЕСКАЯ ПИРАМИДА И ЕЁ ПРОЕКЦИЯ» Учитель: Волкова Лидия Николаевна 2009г. Город Алматы
-
Презентацию готовили
Дасиева Роза, Набоко Михаил, Ибрагимова Карина, Егизбаева Айнура, Асанова Эльвира, Ускенбаева Мадия.
-
О слове пирамида.
Пирамида. Слово «пирамида»в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые знаменитые пирамиды в мире. Другая теория выводит этот термин из греческого слова «пирос» (рожь) – считают, что греки выпекали хлебцы, имевшие форму пирамиды.
-
Что же такое пирамида?
Пирамида- многогранник, у которого основание- многоугольник, боковые грани- треугольники, имеющие общую вершину.
-
Пирамиды: Полные Усеченные Неправильная Правильная
-
От чего зависит вид пирамиды?
Вид пирамиды зависит от многоугольника, который лежит в основании.
-
Проекция пирамиды
Пирамида треугольная
-
-
-
Пирамида– это многогранник, одна из граней которого – произвольный n – угольник A1A2…An, а остальные грани – треугольники с общей вершиной. Этот n – угольник A1A2…An называется основанием пирамиды. Треугольные грани называются боковыми гранями. Общая вершина всех боковых граней называется вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания называются боковыми рёбрами. Объединение боковых граней пирамиды называется её боковой поверхностью. Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды. O S C D В А ABCD –основание S – вершина SO – высота
-
Пирамида называется правильной, если её основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой. Высота боковой грани правильной пирамиды, проведённая из её вершины, называется апофемойэтой пирамиды . Все апофемы равны друг другу. Если в основании пирамиды лежит n-угольник, то пирамида называется n-угольной. Треугольная пирамида называется тетраэдром. Тетраэдр задается четырьмя вершинами; грани тетраэдра – четыре треугольника. Тетраэдр называется правильным, если все его рёбра равны.
-
Свойства пирамиды
· Все боковые рёбра равны между собой. · Все боковые грани – равные равнобедренные треугольники. · Все двугранные углы при основании равны. · Все плоские углы при вершине равны. · Все плоские углы при основании равны · Апофемы боковых граней одинаковы по длине. · В любую правильную пирамиду можно вписать сферу.
-
Площадь пирамиды
Площадью полной поверхностипирамиды называется сумма площадей всех её граней. Sполн=Sбок+Sосн Площадь боковой поверхности пирамиды– сумма площадей её боковых граней. Площадь боковой поверхности правильной пирамиды: Sбок.пов.=1/2 * (Pосн* m), где m – апофема, Р – периметр основания
-
Обьём пирамиды
Объём пирамиды V=(1/3)*Sосн*h, где S – площадь основания, h – высота пирамиды.
-
Усечённая пирамида
Усечённая пирамида– это часть пирамиды, лежащая между основанием и параллельным основанию сечением. Усечённая пирамида является частным случаем пирамиды. Определение.
-
Основанияусечённой пирамиды– основание исходной пирамиды и многоугольник, полученный при пересечении её плоскостью (A1A2…An и B1B2…Bn). Отрезки A1B1, A2B2, …, AnBn называются боковыми рёбрамиусечённой пирамиды. Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания, называется высотой усечённой пирамиды. Боковые грани усечённой пирамиды – трапеции. Усечённую пирамиду с основаниями A1A2…An и B1B2…Bn обозначают так: A1A2…AnB1B2…Bn. Усечённая пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усечённой пирамиды – правильные многоугольники, а боковые грани – равнобедренные трапеции. Высоты этих трапеций называются апофемами. A1 A2 A3 An B1 B2 Bn O
-
Свойства усечённой пирамиды.
1. Боковые рёбра и высота пирамиды делятся секущей плоскостью на пропорциональные отрезки. 2. В сечении получается многоугольник, подобный многоугольнику, лежащему в основании. 3. Площади сечения и основания будут относится между собой, как квадраты их расстояний от вершины пирамиды.
-
Площадь поверхностиправильнойусечённой пирамиды: S=(1/2)*m*(P+P1), где m – апофема, P- периметр оснований, P1- периметр боковой поверхности. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему: Sбок=1/2*(Рв+Рн)* m, где m – апофема, Рв, Рн – периметр верхнего и нижнего оснований Объёмусечённой пирамиды: V=(1/3)*h*(S1+√S1S2+S2), где S1, S2 – площади оснований. Площадь боковой грани: Sбок.гр.=1/2*m*(g+g1), гдеm – апофема, g, g1 – основаниябоковой грани.
-
Плоские сечения пирамиды
Сечения пирамиды плоскостями, проходящими через её вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды. A C D S B E F A C D S B ∆SDB – диагональное сечение пирамиды SABCD.
-
Построить сечение четырехугольной пирамиды плоскостью, проходящей через прямую g и точку Е є пл.(SCD). K G H L M N F S B A C D • E g Решение: 1. Проведем прямую CD, CD ∩ g ≡ F, F Є (SCD). 2. Проведем прямую FE, получим точки пересечения с ребрами пирамиды: SD ∩ FE ≡ H, SC ∩ FE ≡ G. 3. Построим прямую AD. AD ∩ g ≡ K, K Є (SAD). 4. Через точки K и H проведем прямую KH. KH∩SA≡L. 5. Построим прямую AВ, AВ ∩ g ≡ M, M Є (SAB). 6. Через точки M и L строим ML ∩ SB ≡ N. 7. Соединяем точки G, H, L, N. Сечение GHLM построено. Построение сечения.
-
Построить сечение четырехугольной пирамиды плоскостью, проходящей через прямую g и точку Е є пл.(SCD). K G H L M N F S B A C D • E g Решение: 1. Проведем прямую CD, CD ∩ g ≡ F, F Є (SCD). 2. Проведем прямую FE, получим точки пересечения с ребрами пирамиды: SD ∩ FE ≡ H, SC ∩ FE ≡ G. 3. Построим прямую AD. AD ∩ g ≡ K, K Є (SAD). 4. Через точки K и H проведем прямую KH. KH∩SA≡L. 5. Построим прямую AВ, AВ ∩ g ≡ M, M Є (SAB). 6. Через точки M и L строим ML ∩ SB ≡ N. 7. Соединяем точки G, H, L, N. Сечение GHLM построено. Построение сечения.
-
Развернутый вид пирамиды
-
ВСЕМ СПАСИБО!!! КОНЕЦ!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.