Презентация на тему "Пирамиды"

Презентация: Пирамиды
Включить эффекты
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
1.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Пирамиды" по математике. Состоит из 25 слайдов. Размер файла 1.48 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Пирамиды
    Слайд 1

    Пирамиды.

  • Слайд 2
  • Слайд 3

    Многопрофильная гимназия №79 ОТКРЫТЫЙ УРОК «ГЕОМЕТРИЧЕСКАЯ ПИРАМИДА И ЕЁ ПРОЕКЦИЯ» Учитель: Волкова Лидия Николаевна 2009г. Город Алматы

  • Слайд 4

    Презентацию готовили

    Дасиева Роза, Набоко Михаил, Ибрагимова Карина, Егизбаева Айнура, Асанова Эльвира, Ускенбаева Мадия.

  • Слайд 5

    О слове пирамида.

    Пирамида. Слово «пирамида»в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые знаменитые пирамиды в мире. Другая теория выводит этот термин из греческого слова «пирос» (рожь) – считают, что греки выпекали хлебцы, имевшие форму пирамиды.

  • Слайд 6

    Что же такое пирамида?

    Пирамида- многогранник, у которого основание- многоугольник, боковые грани- треугольники, имеющие общую вершину.

  • Слайд 7

    Пирамиды: Полные Усеченные Неправильная Правильная

  • Слайд 8

    От чего зависит вид пирамиды?

    Вид пирамиды зависит от многоугольника, который лежит в основании.

  • Слайд 9

    Проекция пирамиды

    Пирамида треугольная

  • Слайд 10
  • Слайд 11
  • Слайд 12

    Пирамида– это многогранник, одна из граней которого – произвольный n – угольник A1A2…An, а остальные грани – треугольники с общей вершиной. Этот n – угольник A1A2…An называется основанием пирамиды. Треугольные грани называются боковыми гранями. Общая вершина всех боковых граней называется вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания называются боковыми рёбрами. Объединение боковых граней пирамиды называется её боковой поверхностью. Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды. O S C D В А ABCD –основание S – вершина SO – высота

  • Слайд 13

    Пирамида называется правильной, если её основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой. Высота боковой грани правильной пирамиды, проведённая из её вершины, называется апофемойэтой пирамиды . Все апофемы равны друг другу. Если в основании пирамиды лежит n-угольник, то пирамида называется n-угольной. Треугольная пирамида называется тетраэдром. Тетраэдр задается четырьмя вершинами; грани тетраэдра – четыре треугольника. Тетраэдр называется правильным, если все его рёбра равны.

  • Слайд 14

    Свойства пирамиды

    ·     Все боковые рёбра равны между собой. ·     Все боковые грани – равные равнобедренные треугольники. ·     Все двугранные углы при основании равны. ·     Все плоские углы при вершине равны. ·     Все плоские углы при основании равны ·     Апофемы боковых граней одинаковы по длине. ·     В любую правильную пирамиду можно вписать сферу.

  • Слайд 15

    Площадь пирамиды

    Площадью полной поверхностипирамиды называется сумма площадей всех её граней. Sполн=Sбок+Sосн Площадь боковой поверхности пирамиды– сумма площадей её боковых граней. Площадь боковой поверхности правильной пирамиды: Sбок.пов.=1/2 * (Pосн* m), где m – апофема, Р – периметр основания

  • Слайд 16

    Обьём пирамиды

    Объём пирамиды V=(1/3)*Sосн*h, где S – площадь основания, h – высота пирамиды.

  • Слайд 17

    Усечённая пирамида

    Усечённая пирамида– это часть пирамиды, лежащая между основанием и параллельным основанию сечением. Усечённая пирамида является частным случаем пирамиды. Определение.

  • Слайд 18

    Основанияусечённой пирамиды– основание исходной пирамиды и многоугольник, полученный при пересечении её плоскостью (A1A2…An и B1B2…Bn). Отрезки A1B1, A2B2, …, AnBn называются боковыми рёбрамиусечённой пирамиды. Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания, называется высотой усечённой пирамиды. Боковые грани усечённой пирамиды – трапеции. Усечённую пирамиду с основаниями A1A2…An и B1B2…Bn обозначают так: A1A2…AnB1B2…Bn. Усечённая пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усечённой пирамиды – правильные многоугольники, а боковые грани – равнобедренные трапеции. Высоты этих трапеций называются апофемами. A1 A2 A3 An B1 B2 Bn O

  • Слайд 19

    Свойства усечённой пирамиды.

    1.    Боковые рёбра и высота пирамиды делятся секущей плоскостью на пропорциональные отрезки. 2.    В сечении получается многоугольник, подобный многоугольнику, лежащему в основании. 3.    Площади сечения и основания будут относится между собой, как квадраты их расстояний от вершины пирамиды.

  • Слайд 20

    Площадь поверхностиправильнойусечённой пирамиды: S=(1/2)*m*(P+P1), где m – апофема, P- периметр оснований, P1- периметр боковой поверхности. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему: Sбок=1/2*(Рв+Рн)* m, где m – апофема, Рв, Рн – периметр верхнего и нижнего оснований Объёмусечённой пирамиды: V=(1/3)*h*(S1+√S1S2+S2), где S1, S2 – площади оснований. Площадь боковой грани: Sбок.гр.=1/2*m*(g+g1), гдеm – апофема, g, g1 – основаниябоковой грани.

  • Слайд 21

    Плоские сечения пирамиды

    Сечения пирамиды плоскостями, проходящими через её вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды. A C D S B E F A C D S B ∆SDB – диагональное сечение пирамиды SABCD.

  • Слайд 22

    Построить сечение четырехугольной пирамиды плоскостью, проходящей через прямую g и точку Е є пл.(SCD). K G H L M N F S B A C D • E g Решение: 1. Проведем прямую CD, CD ∩ g ≡ F, F Є (SCD). 2. Проведем прямую FE, получим точки пересечения с ребрами пирамиды: SD ∩ FE ≡ H, SC ∩ FE ≡ G. 3. Построим прямую AD. AD ∩ g ≡ K, K Є (SAD). 4. Через точки K и H проведем прямую KH. KH∩SA≡L. 5. Построим прямую AВ, AВ ∩ g ≡ M, M Є (SAB). 6. Через точки M и L строим ML ∩ SB ≡ N. 7. Соединяем точки G, H, L, N. Сечение GHLM построено. Построение сечения.

  • Слайд 23

    Построить сечение четырехугольной пирамиды плоскостью, проходящей через прямую g и точку Е є пл.(SCD). K G H L M N F S B A C D • E g Решение: 1. Проведем прямую CD, CD ∩ g ≡ F, F Є (SCD). 2. Проведем прямую FE, получим точки пересечения с ребрами пирамиды: SD ∩ FE ≡ H, SC ∩ FE ≡ G. 3. Построим прямую AD. AD ∩ g ≡ K, K Є (SAD). 4. Через точки K и H проведем прямую KH. KH∩SA≡L. 5. Построим прямую AВ, AВ ∩ g ≡ M, M Є (SAB). 6. Через точки M и L строим ML ∩ SB ≡ N. 7. Соединяем точки G, H, L, N. Сечение GHLM построено. Построение сечения.

  • Слайд 24

    Развернутый вид пирамиды

  • Слайд 25

    ВСЕМ СПАСИБО!!! КОНЕЦ!

Посмотреть все слайды

Сообщить об ошибке