Содержание
-
ПИРАМИДА УСЕЧЁННАЯ ПИРАМИДА КУРСОВАЯ РАБОТА УЧИТЕЛЯ МАТЕМАТИКИ ГИМНАЗИИ № 171 Анны Евгеньевны КИРЬЯНОВОЙ КЛАСС СТЕРЕОМЕТРИЯ
-
ПИРАМИДА ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ ПРАВИЛЬНАЯ УСЕЧЁННАЯ ПИРАМИДА ПЛОЩАДЬ ПОВЕРХНОСТИ УСЕЧЁННОЙ ПИРАМИДЫ ЗАДАЧИ СОДЕРЖАНИЕ
-
ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ
ПИРАМИДА Плоскость параллельная основанию пирамиды, разбивает её на два многогранника. Один из них является пирамидой, а другой называется усечённой пирамидой. Усеченная пирамида – это часть полной пирамиды, заключенная между её основанием и секущей плоскостью, параллельной основанию данной пирамиды СОДЕРЖАНИЕ
-
ПИРАМИДА СОДЕРЖАНИЕ ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ ОСНОВАНИЯ А1 А2 А4 А3 В1 В3 В4 В2 В5 А5 С Н Многоугольники А1А2А3А4А5 и В1В2В3В4В5 - нижнее и верхнее основания усечённой пирамиды Отрезки А1В1, А2В2, А3В3… - боковыеребра усечённой пирамиды Четырёхугольники А1В1В2А2, А2В2В3А3 … - боковые грани усечённой пирамиды. Можно доказать, что все они являются трапециями. Отрезок СН – перпендикуляр, проведённый из какой-нибудь точки верхнего основания к нижнему основанию – называется высотой усечённой пирамиды.
-
УСЕЧЕННАЯ ПИРАМИДА
ПИРАМИДА А1 А2 А4 А3 В1 В3 В4 В2 В5 А5 a b Р Докажем, что боковые грани А1А2А3А4А5В1В2В3В4В5 являются трапециями. Рассмотрим четырехугольник А1В1В2А2. 1. a || b (РА2А3) ∩ a=А2А3 значитА2А3|| В2В3 (РА2А3) ∩ b=В2В3 2. А2Р∩ А3Р=Р, значит А2В2|| А3В3 Т.о. А1В1В2А2 – трапеция по определению Аналогично доказывается и про остальные боковые грани. СОДЕРЖАНИЕ
-
ПИРАМИДА СОДЕРЖАНИЕ ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ ОСНОВАНИЯ А1 А2 А4 А3 В1 В3 В4 В2 В5 А5 С Н Многоугольники А1А2А3А4А5 и В1В2В3В4В5 - нижнее и верхнее основания усечённой пирамиды Отрезки А1В1, А2В2, А3В3… - боковыеребра усечённой пирамиды Четырёхугольники А1В1В2А2, А2В2В3А3 … - боковые грани усечённой пирамиды. Можно доказать, что все они являются трапециями. Отрезок СН – перпендикуляр, проведённый из какой-нибудь точки верхнего основания к нижнему основанию – называется высотой усечённой пирамиды
-
ПРАВИЛЬНАЯ УСЕЧЕННАЯ ПИРАМИДА
ПИРАМИДА СОДЕРЖАНИЕ Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания - правильные многоугольники . Боковые грани – равные равнобедренные трапеции (?). Высоты этих трапеций называются апофемами.
-
ПРАВИЛЬНАЯ ПИРАМИДА
ПИРАМИДА СОДЕРЖАНИЕ Пирамида называется правильной, если её основание – правильный многоугольник, а отрезок , соединяющий вершину с центром основания, является её высотой. Все боковые рёбра правильной пирамиды равны, а грани являются равными равнобедренными треугольниками. Высота боковой грани правильной пирамиды называется апофемой. Все апофемы правильной пирамиды равны друг другу. F O
-
ПИРАМИДА Правильным многоугольником называется многоугольник, у которого все стороны равны и все углы равны. Центр окружности, описанной около правильного многоугольника совпадает с центром окружности, вписанной в тот же многоугольник, и называется центром правильного многоугольника. Для его нахождения достаточно определить в какой точке находится центр либо вписанной либо описанной окружности.
-
ПИРАМИДА СОДЕРЖАНИЕ УСЕЧЕННЫЕ ПИРАМИДЫ
-
ПЛОЩАДЬ ПОВЕРХНОСТИ УСЕЧЁННОЙ ПИРАМИДЫ
ПИРАМИДА СОДЕРЖАНИЕ Площадью полной поверхности (Sполн) пирамиды называется сумма площадей всех её граней: основания и всех боковых граней. Площадью боковой поверхности(Sбок) пирамиды называется сумма площадей её боковых граней. Sполн =Sбок+Sосн Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему. Площадь боковой поверхности правильной усечённойпирамиды равна произведению полусуммы периметров оснований на апофему. Доказать. Sполн.усеч.=Sбок+Sверхн.осн.+Sнижн.осн.
-
ПИРАМИДА СОДЕРЖАНИЕ Найдем площадь одной из граней правильной n-угольной усечённойпирамиды. α2 α1 h Т.к. эта усечённая пирамида правильная, то
-
ЗАДАЧА 1
ПИРАМИДА Найдите: 1. апофему пирамиды; 2. площадь полной поверхности. СОДЕРЖАНИЕ Стороны оснований правильной треугольной усеченной пирамиды равны 4 см и 2 см, а боковое ребро равно 2 см.
-
Ход решения задачи.
ПИРАМИДА Дано: ABCMPK – правильная усечённая пирамида; ∆АВС – нижнее основание; ∆МРК – верхнее основание; АВ = 4 см, МР = 2 см, АМ = 2 см. Найти: 1. апофему; 2. Sполн. План решения: Сделать чертеж. Построить апофему и определить многоугольник, из которого можно её найти. Произвести необходимые вычисления. СОДЕРЖАНИЕ А В С М Р К А В М Р 2 2 4
-
РЕШЕНИЕ
ПИРАМИДА А В М Р 2 2 Н С 2 СОДЕРЖАНИЕ АВ=АН+АС+СВ СВ=АН АВ=2АН+МР НС=МР Т.о. 2АН=2, АН=1 ∆АМН – прямоугольный, АНМ=90 АН= по теореме Пифагора. 4 Sполн=Sбок+Sверхн.осн.+Sнижн.осн. т.к. в основании правильные треугольники
-
ПИРАМИДА Ответ: СОДЕРЖАНИЕ
-
ЗАДАЧА 2
ПИРАМИДА Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 см, а площадь её полной поверхности равна 186 см2. Найдите высоту усечённой пирамиды. СОДЕРЖАНИЕ
-
ПИРАМИДА СПАСИБО ЗА ТЕРПЕНИЕ
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.