Презентация на тему "Пирамиды"

Презентация: Пирамиды
Включить эффекты
1 из 6
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
1.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Пирамиды" по математике, включающую в себя 6 слайдов. Скачать файл презентации 0.92 Мб. Средняя оценка: 1.0 балла из 5. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    6
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Пирамиды
    Слайд 1

    Пирамиды

  • Слайд 2

    Что такое?

    Пирамидой( SABCD ) называется многогранник, который состоит из плоского многоугольника - основания пирамиды( ABCD ), точка S, не лежащая в плоскости основания, - вершиной пирамидыи всех отрезков, соединяющих вершину пирамиды с точками основания. Треугольники SAB, SBC, SCD, SDA - боковые грани. Прямые SA, SB, SC, SD - боковые ребрапирамиды. Перпендикуляр SO, опущенный из вершины на основание, называется высотойпирамиды и обозначается Н. Пирамида называется правильной, если ее основание - правильный многоугольник, а высота ее проходит через центр основания. Боковые грани правильной пирамиды - равнобедренные треугольники, равные между собой. Высота боковой грани правильной пирамиды - апофемапирамиды. Треугольная пирамида называется тетраэдром.

  • Слайд 3

    Правильная пирамида

    Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды.Как известно центр правильного треугольника совпадает с центром вписанной и описанной окого него окружности. Поэтому отрезки АО, ВО и СО равны как радиусы.Поэтому прямоугольные треугольники АОМ, ВОМ и СОМ равны по двум катетам (МО-общая). Из равенства этих треугольников следует равенство соответствующих сторон: АМ=ВМ=СМ Свойство 1:В правильной n-угольной пирамиде все боковые ребра равны между собой.Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам. Свойство 2: Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники, поэтому все плоские углы при вершине равны, все плоские углы при основании равны.Из равенства прямоугольных треугольников ОРМ, ОТМ и ОКМ (ОТ=ОР=ОК как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды РОРМ=РОТМ=РОКМ Свойство 3:В правильной n-угольной пирамиде все двугранные углы при основании равны.

  • Слайд 4

    Формулы для пирамид

    Площадью полной поверхности пирамиды называется сумма площадей всех её граней Sполн=Sбок+Sосн; Площадь боковой поверхности пирамиды – сумма площадей её боковых граней; Площадь боковой грани Sбок.гр=1/2 x mx\g\, где m – апофема, \g\ - основание грани; Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему Sбок=1/2 x(Pоснx m), где m – апофема, Р – периметр многоугольника основания; Объём пирамиды V=(1/3) x Sоснx h.

  • Слайд 5

    Задача1:Основание пирамиды – треугольник, две стороны которого равны 1 и 2, а угол между ними равен 60˚. Каждое боковое ребро равно √13 . Найдите объем пирамиды. Решение. Так как все ребра (боковые) пирамиды равны, они одинаково наклонены к основанию, и вершина пирамиды проектируется в центр описанной вокруг основания окружности. (см. чертеж). Объем пирамиды: , , Высоту SO можно найти по т. Пифагора например, из треугольника ASO. Для этого нужно найти AO – радиус описанной окружности основания. Воспользуемся теоремой синусов: .Но сначала по теореме косинусов найдем сторону BC: , BC= . Теперь вычислим радиус описанной окружности: Найдем SO: . Вычислим объем: .Ответ: V=1. Задача

  • Слайд 6

    А под конец…

    Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые знаменитые пирамиды в мире. Другая теория выводит этот термин из греческого слова «пирос» (рожь) – считают, что греки выпекали хлебцы, имевшие форму пирамиды

Посмотреть все слайды

Сообщить об ошибке