Содержание
-
Правильные паркетыКрасота спасет мир?
Основополагающий вопрос: Гипотеза: Правильных паркетов конечное число? 2) Как их построить?
-
Учебные вопросы :
Определение правильных многоугольников Построение правильных многоугольников Вычисление углов правильных многоугольников Определение групп: Историки Теоретики Строители
-
Задания для групп:
Изучить историю данного вопроса используя научную литературу и интернет ресурсы; Найти определение правильных паркетов, ответить на вопрос – « сколько их существует и почему?» Построить все правильные паркеты используя цветной картон и чертежные инструменты
-
История
История паркета насчитывает несколько тысячелетий. Более тридцати веков назад люди начали использовать древесину для оформления пола в жилище. Слово «паркет» появилось во Франции, откуда в Европу пришла мода на фанерованный паркет. Там же впервые начали изготавливать щитовой и мозаичный пол из древесины. В России активно использовать паркет начали лишь в 18 веке, во время строительства Эрмитажа.
-
Сколько сходится многоугольников в одной звезде?
Звездой вершиной называется фигура, образованная всеми многоугольниками, содержащими её. 360⁰
-
Сколько всего правильных паркетов?Как они устроены?
Подобно тому как при бесчисленном множестве многогранников вообще существует лишь конечное число правильных многогранников, так и при бесчисленном множестве паркетов существует лишь конечное число правильных паркетов. Решение нашей задачи естественно начать с исследования вершин паркета. Из определения правильности сразу вытекает принцип эквивалентности вершин: любые две вершины устроены одинаково в том смысле, что звезды всех вершин одинаковы.
-
Число многоугольников, находящихся в окрестности точки, должно быть больше 2 (360°/180°). Многоугольника с углами по 180градусов не существует Величина угла правильного многоугольника должна находиться в интервале от 60° до 180° (не включая); следовательно, число многоугольников, находящихся в окрестности точки, не может превышать 6 (360°/60°) 180⁰ 180⁰
-
-
-
-
-
Можно показать, что существуют следующие способы уложить паркет комбинациями правильных многоугольников: (3,12,12); (4,6,12); (6,6,6); (3,3,6,6) - два варианта паркета; (3,4,4,6) - четыре варианта; (3,3,3,4,4) - четыре варианта; (3,3,3,3,6); (3,3,3,3,3,3) (цифры в скобках - обозначения многоугольников, сходящихся в каждой вершине: 3 - правильный треугольник, 4 - квадрат, 6 - правильный шестиугольник, 12 - правильный двенадцатиугольник). Некоторые варианты паркета показаны на следующих иллюстрациях:
-
Геометрические паркеты
Паркет (или мозаика) - бесконечное семейство многоугольников, покрывающее плоскость без просветов и двойных покрытий. Иногда паркетом называют покрытие плоскости правильными многоугольниками, при котором два многоугольника имеют либо общую сторону, либо общую вершину, либо совсем не имеют общих точек; но мы будем рассматривать как правильные, так и неправильные многоугольники.Итак, какими же многоугольниками можно замостить плоскость?
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.