Презентация на тему "Размещения"

Презентация: Размещения
Включить эффекты
1 из 23
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.8
4 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Размещения" в режиме онлайн с анимацией. Содержит 23 слайда. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    23
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Размещения
    Слайд 1

    Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 7. Тема: Размещения. Цель: Рассмотреть формулы для числа размещений без повторений и с повторениями.

  • Слайд 2

    Размещения

    Определение 1 Размещением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n. Пример Дано множество . Составим все 2-размещения этого множества.

  • Слайд 3

    Число размещений

    Теорема 1 Число всех размещений из n элементов по k вычисляется по формуле Доказательство. Каждое размещение можно получить с помощью k действий: 1) выбор первого элемента n способами; 2) выбор второго элемента (n-1) способами; и т. д. k)выбор k –го элемента (n-(k-1))=(n-k+1) способами. По правилу умножения число всех размещений будет n(n-1)(n-2)…(n-k+1). Теорема доказана.

  • Слайд 4

    Замечание. Формулу для числа размещений можно записать в виде Действительно

  • Слайд 5

    Пример

    Абонент забыл последние 3 цифры номера телефона. Какое максимальное число номеров ему нужно перебрать, если он вспомнил, что эти последние цифры разные? Решение. Задача сводится к поиску различных перестановок 3 элементов из 10 ( так как всего цифр 10). Применим формулу для числа перестановок.

  • Слайд 6

    Размещения с повторениями

    Определение 2 Размещением с повторением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n элементов возможно с повторениями. Пример Дано множество Составим 2- размещения с повторениями:

  • Слайд 7

    Число размещений с повторениями

    Теорема 2. Число k- размещений с повторениями из n элементов вычисляется по формуле Доказательство. Каждый элемент размещения можно выбрать n способами. По правилу умножения число всех размещений с повторениями равно

  • Слайд 8

    Пример

    Сколько существует номеров машин? Решение. Считаем, что в трех буквах номера машины не используются буквы «й», «ы», «ь», «ъ», тогда число перестановок букв равно . Число перестановок цифр равно . По правилу умножения получим число номеров машин

  • Слайд 9

    Перестановки

    Определение 1 Перестановкой из n элементов называется всякий способ нумерации этих элементов Пример 1 Дано множество . Составить все перестановки этого множества. Решение.

  • Слайд 10

    Число перестановок

    Теорема 1. Число всех различных перестановок из n элементов равно n! Замечание. Например, Считают, что 0!=1 читается «n факториал» и вычисляется по формуле

  • Слайд 11

    Доказательство теоремы 1. Любую перестановку из n элементов можно получить с помощью n действий: выбор первого элемента n различными способами, выбор второго элемента из оставшихся (n-1) элементов, т.е. (n-1) способом, выбор третьего элемента (n-2) способами, …… n)выбор n-гоэлемента 1 способом. По правилу умножения число всех способов выполнения действий, т.е. число перестановок, равно Теорема доказана.

  • Слайд 12

    Перестановки

    Число всех перестановок обозначается Итак, Пример В команде 6 человек. Сколькими способами они могут построиться для приветствия? Решение Число способов построения равно числу перестановок 6 элементов, т.е.

  • Слайд 13

    Перестановки с повторениями

    Теорема 2 Число перестановок n – элементов, в котором есть одинаковые элементы, а именно элементов i –того типа ( ) вычисляется по формуле где Доказательство. Так как перестановки между одинаковыми элементами не изменяют вид перестановки в целом, количество перестановок всех элементов множества нужно разделить на число перестановок одинаковых элементов.

  • Слайд 14

    Пример

    Задача: Сколько слов можно составить, переставив буквы в слове «экзамен», а в слове «математика»? Решение: В слове «экзамен» все буквы различны, поэтому используем формулу для числа перестановок без повторений В слове «математика» 3 буквы «а», 2 буквы «м», 2 буквы «т», поэтому число перестановок всех букв разделим на число перестановок повторяющихся букв:

  • Слайд 15

    Задачи

    1)Сколькими способами можно составить список из 8 учеников, если у них различные инициалы? Решение Задача сводится к подсчету числа перестановок ФИО.

  • Слайд 16

    2)Сколькими способами можно составить список 8учеников, так, чтобы два указанных ученика располагались рядом? Решение Можно считать двоих указанных учеников за один объект и считать число перестановок уже 7 объектов, т.е. Так как этих двоих можно переставлять местами друг с другом, необходимо умножить результат на 2!

  • Слайд 17

    3) Сколькими способами можно разделить 11 спортсменов на 3 группы по 4, 5 и 2 человека соответственно? Решение. Сделаем карточки: четыре карточки с номером 1, пять карточек с номером 2 и две карточки с номером 3. Будем раздавать эти карточки с номерами групп спортсменам, и каждый способ раздачи будет соответствовать разбиению спортсменов на группы. Таким образом нам необходимо посчитать число перестановок 11 карточек, среди которых четыре карточки с одинаковым номером 1, пять карточек с номером 2 и две карточки с номером 3.

  • Слайд 18

    4) Сколькими способами можно вызвать по очереди к доске 4 учеников из 7? Решение. Задача сводится к подсчету числа размещений из 7 элементов по 4

  • Слайд 19

    5)Сколько существует четырехзначных чисел, у которых все цифры различны? Решение. В разряде единиц тысяч не может быть нуля, т.е возможны 9 вариантов цифры. В остальных трех разрядах не может быть цифры, стоящей в разряде единиц тысяч (так как все цифры должны быть различны), поэтому число вариантов вычислим по формуле размещений без повторений из 9 по 3 По правилу умножения получим

  • Слайд 20

    6)Сколько существует двоичных чисел, длина которых не превосходит 10? Решение. Задача сводится к подсчету числа размещений с повторениями из двух элементов по 10

  • Слайд 21

    7)В лифт 9 этажного дома зашли 7 человек. Сколькими способами они могут распределиться по этажам дома? Решение. Очевидно, что на первом этаже никому не надо выходить. Каждый из 7 человек может выбрать любой из 8 этажей, поэтому по правилу умножения получим Можно так же применить формулу для числа размещений с повторениями из 8 (этажей) по 7(на каждого человека по одному этажу)

  • Слайд 22

    8)Сколько чисел, меньше 10000 можно написать с помощью цифр 2,7,0? Решение.Так как среди цифр есть 0, то, например запись 0227 соответствует числу 227, запись 0072 соответствует числу 72, а запись 007 соответствует числу 7. Таким образом, задачу можно решить, используя формулу числа размещений с повторениями

  • Слайд 23

    Вопросы: Является ли перестановка – размещением? Сравнить выражения А и А 3 7 7 3

Посмотреть все слайды

Сообщить об ошибке