Презентация на тему "Свойство биссектрисы" 7 класс

Презентация: Свойство биссектрисы
Включить эффекты
1 из 10
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.5
4 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для 7 класса на тему "Свойство биссектрисы" по математике. Состоит из 10 слайдов. Размер файла 0.18 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

Содержание

  • Презентация: Свойство биссектрисы
    Слайд 1

    Замечательные точки треугольника.Урок 1. Свойство биссектрисы угла

    Презентация выполнена учителем математики МБОУ СОШ № 22 Лисицыной Татьяной Петровной, п. Пересыпь, Темрюкский район, Краснодарский край

  • Слайд 2

    Цели урока:

    Рассмотреть теорему о свойстве биссектрисы угла и её следствие. Учить применять данные теоремы и следствие при решении задач.

  • Слайд 3

    Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

  • Слайд 4

    C каждым треугольником связаны четыре точки:   • точка пересечения медиан; • точка пересечения биссектрис; • точка пересечения серединных перпендикуляров; • точка пересечения высот.   Эти четыре точки называют замечательными точками треугольника. Почему они «Замечательные»? Это нам и предстоит узнать.

  • Слайд 5

    Свойство биссектрисы

    Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратно: Каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. ?

  • Слайд 6

    Дано:

    Доказательство: 1.Возьмём т. МЄAD. 2. Из т. М проведём МК и ML перпендикулярно AB и AC. 3. Рассмотрим ΔAKM и Δ AML. 4. ΔAKM = Δ AML, MK=ML ? А L K B C M D 2 1

  • Слайд 7

    Следствие: Биссектрисы треугольника пересекаются в одной точке.

    1.Построим биссектрисы АА₁, BB₁, CC₁. 2. Обозначим точку O – точку пересечения биссектрис. 3. Проведём OK, OL и OM-перпендикуляры к сторонам ΔABC 4. По теореме: OK=OM=OL т. О ЄСС₁ Следовательно, все биссектрисы треугольника пересекаются в одной точке. B₁ M A₁ K C₁ L A C В O

  • Слайд 8

    № 676б.Cтороны угла А, равного 90°, касаются окружности с центром О и радиусом r, ОА = 14 дм.Найдите: r.

    Решение: Проведём радиусы OP и OH из центра окружности в точки касания. OP AP, OH AH 3. AO – биссектриса угла 4. Δ AOP – прямоугольный. По теореме Пифагора: AO²=OP²+AP² AO²=r²+r², 2r²=14², r=7√2. Ответ: r=7√2дм. ? H A P O ?

  • Слайд 9

    №678 а – дополнительно.

    Оформить и решить самостоятельно. Ответ: 46˚

  • Слайд 10

    Использованные ресурсы: 1. Учебник «Геометрия 7-9»; авт: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. М., Просвещение, 2007г. 2. Рисунки треугольников: http://www.google.ru/search?q=%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8+%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0&hl=ru&newwindow=1&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=_j5CT9zvLK_Q4QSShuyACA&ved=0CCIQsAQ&biw=1247&bih=864.

Посмотреть все слайды

Конспект

Урок по геометрии в 8 классе

разработан

Лисицыной Татьяной Петровной,

учителем математики МБОУ СОШ №22,

п. Пересыпь, Темрюкский район, Краснодарский край

Урок 56 Г-8

Тема: Свойство биссектрисы угла

Цели:

1. Рассмотреть теорему о свойстве биссектрисы угла и её следствие.

2. Учить применять данные теоремы и следствие при решении задач.

3. Формировать умения применять известные знания в незнакомой ситуации, сравнивать, анализировать, обобщать.

4. Продолжать развивать познавательную активность, умение формулировать свои выводы и доказывать их.

5. Воспитывать уверенность в себе, познавательный интерес.

Оборудование: компьютер, проектор, презентация, чертёжные инструменты.

Ход урока

I. Организационный момент. Объявление темы и постановка целей урока.

II. Проверка домашнего задания.

1. № 669 - решение на доске.

2. Решить устно:

1) Докажите, что SАОС = SВОС.

III. Мотивация изучения материала (Слайд 3).

Геометрия - удивительная наука. Её история насчитывает не одно тысячелетие. Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Удивительно, но треугольник, несмотря на свою простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника. (Слайд 4).

Для того, чтобы начать изучение нового материала, нам придётся опереться на уже изученный материал. Какие линии в треугольнике вам известны? К числу линий, изучаемых в школьном курсе геометрии, относятся:

• высоты треугольника;

• медианы треугольника;

• биссектрисы треугольника;

• серединные перпендикуляры к сторонам треугольника.

Повторение определений основных линий в треугольнике путём фронтальной беседы.

IV. Изучение нового материала.

1. Работа с чертёжными инструментами на доске (4 ученика):

построение биссектрисы, медианы, высоты, серединного перпендикуляра в треугольнике.

2. Работа с бумагой (работа по рядам)

Каждый ряд получает задание (используя треугольный лист бумаги): построить сгибанием точку пересечения биссектрис.

Биссектриса треугольника - отрезок биссектрисы угла, соединяющий вершину треугольника с точкой противоположной стороны.

I ряд: с помощью сгибов постройте биссектрисы в остроугольном треугольнике.

II ряд: с помощью сгибов постройте биссектрисы в тупоугольном треугольнике. III ряд: с помощью сгибов постройте биссектрисы в прямоугольном треугольнике.

Вывод: Биссектрисы углов треугольника пересекаются в одной точке.

3. Доказательство теоремы. (Слайд 5)

Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.

Обратно:

Каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. (Слайд 6)

4. Доказательство следствия из теоремы. (Слайд 7)

Биссектрисы треугольника пересекаются в одной точке.

V. Закрепление изученного материала.

Решить №№ 676 (б). (Слайд 8)

Дано: стороны угла А, равного 90°, касаются окружности с центром О и радиусом r, ОА = 14 дм.

Найдите: r.

Решение: 1) ( так как касательная перпендикулярна к радиусу, проведенному в точку касания.)

2). АО – биссектриса угла А (так как точка О равноудалена от сторон угла).

3). ∆АОР – прямоугольный. По теореме Пифагора ОР² +АР² =АО².

r ² + r ² = 14², 2r ² = 14², r = .

Ответ: .

ВДополнительно: № 678 (а).

4 3 2 1 C ? ? 136 ° М В 1 А 1 А

Дано: ∆АВС, АА1 и ВВ1 биссектрисы углов А и В .

Найти:

Решение: 1) СМ – биссектриса угла С, так как биссектрисы углов в треугольнике пересекаются в одной точке.

2) ∆АМВ,

3)

Ответ: 46°.

VI. Итоги урока. Рефлексия.

V. Домашнее задание: вопросы 15, 16, с. 187; №№ 676 (а), 678 (б).

Урок по геометрии в 8 классе

разработан

Лисицыной Татьяной Петровной,

учителем математики МБОУ СОШ №22,

п. Пересыпь, Темрюкский район, Краснодарский край

Урок 56 Г-8

Тема: Свойство биссектрисы угла

Цели:

1. Рассмотреть теорему о свойстве биссектрисы угла и её следствие.

2. Учить применять данные теоремы и следствие при решении задач.

3. Формировать умения применять известные знания в незнакомой ситуации, сравнивать, анализировать, обобщать.

4. Продолжать развивать познавательную активность, умение формулировать свои выводы и доказывать их.

5. Воспитывать уверенность в себе, познавательный интерес.

Оборудование: компьютер, проектор, презентация, чертёжные инструменты.

Ход урока

I. Организационный момент. Объявление темы и постановка целей урока.

II. Проверка домашнего задания.

1. № 669 - решение на доске.

2. Решить устно:

1) Докажите, что SАОС = SВОС.

III. Мотивация изучения материала (Слайд 3).

Геометрия - удивительная наука. Её история насчитывает не одно тысячелетие. Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Удивительно, но треугольник, несмотря на свою простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника. (Слайд 4).

Для того, чтобы начать изучение нового материала, нам придётся опереться на уже изученный материал. Какие линии в треугольнике вам известны? К числу линий, изучаемых в школьном курсе геометрии, относятся:

• высоты треугольника;

• медианы треугольника;

• биссектрисы треугольника;

• серединные перпендикуляры к сторонам треугольника.

Повторение определений основных линий в треугольнике путём фронтальной беседы.

IV. Изучение нового материала.

1. Работа с чертёжными инструментами на доске (4 ученика):

построение биссектрисы, медианы, высоты, серединного перпендикуляра в треугольнике.

2. Работа с бумагой (работа по рядам)

Каждый ряд получает задание (используя треугольный лист бумаги): построить сгибанием точку пересечения биссектрис.

Биссектриса треугольника - отрезок биссектрисы угла, соединяющий вершину треугольника с точкой противоположной стороны.

I ряд: с помощью сгибов постройте биссектрисы в остроугольном треугольнике.

II ряд: с помощью сгибов постройте биссектрисы в тупоугольном треугольнике. III ряд: с помощью сгибов постройте биссектрисы в прямоугольном треугольнике.

Вывод: Биссектрисы углов треугольника пересекаются в одной точке.

3. Доказательство теоремы. (Слайд 5)

Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.

Обратно:

Каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. (Слайд 6)

4. Доказательство следствия из теоремы. (Слайд 7)

Биссектрисы треугольника пересекаются в одной точке.

V. Закрепление изученного материала.

Решить №№ 676 (б). (Слайд 8)

Дано: стороны угла А, равного 90°, касаются окружности с центром О и радиусом r, ОА = 14 дм.

Найдите: r.

Решение: 1) ( так как касательная перпендикулярна к радиусу, проведенному в точку касания.)

2). АО – биссектриса угла А (так как точка О равноудалена от сторон угла).

3). ∆АОР – прямоугольный. По теореме Пифагора ОР² +АР² =АО².

r ² + r ² = 14², 2r ² = 14², r = .

Ответ: .

ВДополнительно: № 678 (а).

4 3 2 1 C ? ? 136 ° М В 1 А 1 А

Дано: ∆АВС, АА1 и ВВ1 биссектрисы углов А и В .

Найти:

Решение: 1) СМ – биссектриса угла С, так как биссектрисы углов в треугольнике пересекаются в одной точке.

2) ∆АМВ,

3)

Ответ: 46°.

VI. Итоги урока. Рефлексия.

V. Домашнее задание: вопросы 15, 16, с. 187; №№ 676 (а), 678 (б).

Скачать конспект

Сообщить об ошибке