Презентация на тему "Тезаурус по комбинаторике"

Презентация: Тезаурус по комбинаторике
1 из 13
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
2.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Тезаурус по комбинаторике" по математике. Состоит из 13 слайдов. Размер файла 0.25 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    13
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Тезаурус по комбинаторике
    Слайд 1

    Тезаурус по комбинаторике

  • Слайд 2

    Оглавление

    Факториал Комбинация Множество Теория Вероятности Комбинаторика Г. Лейбниц Н. Чарталье Галилео Галилей Б.Пискамо П. Ферма Дж. Кардано

  • Слайд 3

    Факториа́л числа n (обозначается n!, произносится энфакториа́л) — произведение всех натуральных чисел до n включительно: По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Эта функция часто используется в комбинаторике, теории чисел и функциональном анализе. Иногда словом «факториал» неформально называют восклицательный знак. Факториал

  • Слайд 4

    Комбинаторика

    Комбинато́рика (Комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисление элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики — алгеброй, геометрией, теорией вероятности, и имеет широкий спектр применения, например в информатике и статистической физике. Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве». Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

  • Слайд 5

    1. Сочетание, взаимное расположение чего-нибудь. 2. Сложный замысел, система приемов для достижения чего-нибудь. Комбинация

  • Слайд 6

    Множество

    Мно́жество — один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие — значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество — это, пожалуй, самое широкое понятие математики и логики).

  • Слайд 7

    Теория Вероятности

    Тео́риявероя́тностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Важный вклад в теорию вероятностей внёс Яков Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

  • Слайд 8

    Г. Лейбниц

    Готфрид Вильгельм фон Лейбниц Дата и место рождения: 1 июля, 1646 (Лейпциг, Германия) Дата и место смерти: 14 ноября, 1716 (Ганновер, Германия) Школа/традиция: рационализм Период: Философия XVII век, (Философия Нового времени) Направление: Европейская философия Основные интересы: Метафизика, эпистемология, наука, математика, теодицея Значительные идеи: Математический анализ, врождённые идеи, оптимизм, монада Оказавшие влияние: Платон, Аристотель, Схоластика, Декарт, Христиан Гюйгенс Последователи: Математики последующих эпох, Христиан Вольф, Кант, Бертран Рассел, Герман Гессе

  • Слайд 9

    Н. Чарталье

  • Слайд 10

    Галилео Галилей

    Галилео Галилей (итал. GalileoGalilei; 15 февраля 1564, Пиза — 8 января 1642, Арчетри, близ Флоренции) — итальянский философ, математик, физик, механик и астроном, оказавший значительное влияние на науку своего времени. Галилей первым использовал телескоп для наблюдения планет и других небесных тел, и сделал ряд выдающихся астрономических открытий. Галилей — основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической динамики. При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.

  • Слайд 11

    Б. Пискамо

  • Слайд 12

    П. Ферма

    Пьер де Ферма́ (фр. PierredeFermat, 1601—1665) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма. Ферма практически по современным правилам находил касательные к алгебраическим кривым. Именно эти работы подтолкнули Ньютона к созданию анализа. Ферма сформулировал общий закон дифференцирования дробных степеней и распространил формулу интегрирования степени на случаи дробных и отрицательных показателей. Развив идею Декарта, Ферма применил аналитическую геометрию к пространству. В работе «Введение к теории плоских и пространственных мест», ставшей известной в 1636 году, Ферма показал, что прямым соответствуют уравнения 1-й степени, а коническим сечениям — уравнения 2-й степени. Ферма исследовал общие виды уравнений 1-й и 2-й степеней.

  • Слайд 13

    Дж. Кардано

    Джероламо (Джироламо, Иероним) Кардано (лат. Hieronymus Cardanus, итал. GirolamoCardano, GerolamoCardano; 24 сентября 1501, Павия — 21 сентября 1576, Рим) — итальянский математик, инженер, философ, медик и астролог, изобретатель карданного вала. Побочный сын адвоката Фачио (Facio) Кардано. Кардано внёс значительный вклад в развитие алгебры: его имя носит формула Кардано для нахождения корней кубического неполного уравнения вида x3 + ax + b = 0. Он же первым в Европе стал использовать отрицательные корни уравнений. В действительности Кардано не открывал этот алгоритм и даже не пытался приписать его себе. В своём трактате «Высокое искусство» («Arsmagna») он признаётся, что узнал формулу от Никколо Тартальи, пообещав сохранить его в тайне, однако обещание не сдержал и спустя 6 лет (1545) опубликовал упомянутый трактат. Из него учёный мир и узнал о замечательном открытии. Кардано также включил в свою книгу ещё одно открытие, сделанное его учеником Лодовико (Луиджи) Феррари: общее решение уравнения четвёртой степени.

Посмотреть все слайды

Сообщить об ошибке