Презентация на тему "Задачи на вероятность" 11 класс

Презентация: Задачи на вероятность
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Задачи на вероятность"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 17 слайдов. Средняя оценка: 4.0 балла из 5. Также представлены другие презентации по математике для 11 класса. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Аудитория
    11 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Задачи на вероятность
    Слайд 1

    Статистическое определение вероятности.

    Решение задач. pptcloud.ru

  • Слайд 2

    Диктант.

    Запишите формулу вычисления вероятности случайного события в классической модели. Поясните, что означает каждая буква в этой формуле. Запишите формулу вычисления вероятности случайного события в статистической модели. Поясните, что означает каждая буква в этой формуле. Какому условию должны удовлетворять исходы опыта, чтобы можно было воспользоваться классическим определением вероятности? Чему равна частота достоверного события? Чему равна частотаневозможного события?

  • Слайд 3

    Решение задач.

    Задача 1. В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей? Решение. w = 5/100 = 0,05 Ответ: w = 0,05.

  • Слайд 4

    Задача 2. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов. Решение. Ответ: 102 попадания.

  • Слайд 5

    Вероятностная шкала.

    Что вероятнее?

  • Слайд 6

    Попытаемся расположить на специальной вероятностной шкале события:

    А={в следующем году первый снег в Москве выпадет в воскресенье}; В={свалившийся со стола бутерброд упадет на пол маслом вниз}; С={при бросании кубика выпадет шестерка}; D={пpu бросании кубика выпадет четное число очков}; Е={в следующем году снег в Москве вообще не выпадет}; F={пpu бросании кубика выпадет семерка}; G={в следующем году в Москве выпадет снег}; Н={при бросании кубика выпадет число очков, меньшее 7}.

  • Слайд 7

    Вероятностная шкала

    Чем больше у случайного события шансов произойти, тем оно более вероятно и тем правее его следует расположить на вероятностной шкале; чем меньше шансов - тем левее. Если два события, на наш взгляд, имеют равные шансы, будем располагать их в одном и том же месте шкалы друг над другом. Вероятность: 0 0,5 1 События: Невозможные Достоверные Случайные

  • Слайд 8

    Пример 1. Вова хочет вытянуть наугад одну карту из колоды с 36-ю картами. Маша, Саша, Гриша и Наташа предсказали следующее:

    Маша: Это будет король. Саша: Это будет пиковая дама. Гриша: Эта карта будет красной масти. Наташа: Эта карта будет пиковой масти.

  • Слайд 9

    Решение :

    Как сравнить между собой шансы предсказателей? Обозначим все события, предсказанные ребятами, буквами: А={Вова достанет короля}; В={Вова достанет пиковую даму}; С={Вова достанет карту красной масти}; D={Вова достанет карту пиковой масти}. Всего в колоде: королей - 4; Р(А)=4/36 пиковая дама - 1; Р(В)=1/36 карт красных мастей-18; Р(С)=18/36 пик- 9; Р(D)=9|36 B A D C

  • Слайд 10

    Пример 2. Что вероятнее: А={получить шестерку при подбрасывании кубика} или В={вытянуть шестерку из перетасованной колоды карт}?

    Как и в предыдущем примере, подсчитаем шансы за осуществление каждого из этих событий. На кубике одна шестерка; в колоде четыре шестерки. Стало быть, событие. В более вероятно? Нет, конечно! Просто мы неверно считали шансы. Ведь когда речь идет о шансах, то говорят не просто «два шанса» или «один шанс», а «два шанса из трех» или «один шанс из тысячи». В примере 1 это не могло привести к ошибке, поскольку там все шансы были «из 36». А вот в этом примере ситуация сложнее: шестерок на кубике -1, а всего граней у куба - 6; шестерок в колоде - 4, а всего карт в колоде - 36.

  • Слайд 11

    Решение :

    Ясно, что «1 шанс из 6» лучше, чем «4шанса из 36», ведь 1/6 больше 4/36. Таким образом, шансы имеет смысл сравнивать как дроби: в числителе - сколько шансов за осуществление данного события, а в знаменателе - сколько всего возможно исходов. Понятно, что если знаменатели одинаковые, то можно сравнивать только числители (что и было сделано в примере 1).

  • Слайд 12

    Пример 3. Попробуем на основе нашего опыта общения по телефону сравнить между собой степень вероятности следующих событий:

    А ={вам никто не позвонит с 5 до 6 утра}; В ={вам кто-нибудь позвонит с 5 до 6 утра}; С ={вам кто-нибудь позвонит с 18 до 21}; D ={вам никто не позвонит с 18 до 21}.

  • Слайд 13

    Решение :

    Ранним утром звонки бывают очень редко, поэтому событие А - очень вероятное, почти достоверное, а В - маловероятное, почти невозможное. Вечерние часы, наоборот, время самого активного телефонного общения, поэтому событие С для большинства людей вероятные, чем D. Хотя, если вам вообще звонят редко, D может оказаться вероятнее С.

  • Слайд 14

    Задача 3. При проведении контроля качества среди 1000 случайно отобранных деталей оказалось 5 бракованных. Сколько бракованных деталей следует ожидать среди 25 000 деталей?

    По результатам контроля можно оценить вероятность события А={произведенная деталь бракованная}. Приближенно она будет равна его частоте: Р(А) = 5/1000=0,005. Следует ожидать такую частоту и в будущем, поэтому среди 25 000 деталей окажется около 25 000 • 0,005 = 125 бракованных. Решение задач.

  • Слайд 15

    Задача 4. Население города Калуги составляет около 400 000 жителей. Сколько калужан родились 29 февраля?

    Заметим прежде всего, что вопрос задачи не совсем корректен: мы можем ответить на него лишь приближенно, ибо реальная частота даже в такой большой выборке из 400 000 жителей не обязана совпадать с вероятностью. 29 февраля бывает только в високосном году — один раз в четыре года, следовательно, для случайно выбранного человека его день рождения попадает на 29 февраля с вероятностью Это значит, что среди 400 000 жителей Калуги следует ожидать около человека, которым приходится праздновать свой день рождения раз в четыре года. Решение задач.

  • Слайд 16

    Задача 5. Из озера выловили 86 рыб, которых пометили и отпустили обратно в озеро. Через неделю произвели повторный отлов, на этот раз поймали 78 рыб, среди которых оказалось 6 помеченных. Сколько приблизительно рыб живет в озере?

    Оказывается, найти ответ на этот неожиданный вопрос совсем несложно. В самом деле: обозначим неизвестную нам численность рыб в озере через N. Тогда вероятность поймать помеченную рыбу в озере будет 86/N. С другой стороны, эта вероятность должна приближенно равняться полученной во втором улове частоте: 86/N=6/78. Отсюда N = 86 • 78 / 6 = 1118. Решение задач.

  • Слайд 17

    Домашнее задание:

    В письменном тексте одной из «букв» считается пробел между словами. Найдите частоту просвета в любом газетном тексте.

Посмотреть все слайды

Сообщить об ошибке