Презентация на тему "Замечательные кривые"

Презентация: Замечательные кривые
Включить эффекты
1 из 10
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Замечательные кривые" по математике. Состоит из 10 слайдов. Размер файла 0.5 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    10
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Замечательные кривые
    Слайд 1

    Замечательные кривые Руководитель проекта – Попова Ольга Николаевна учитель математикиМОУ гимназии №1 Выполнил проект: Чичканов Роман ученик 9А Липецк 2011

  • Слайд 2

    Цели проекта

    Расширить кругозор учащихся, стимулировать их познавательную активность и творчество. Пополнить запас знаний учащихся по геометрии, изобразительному искусству, физике, оптике. Использовать материал проекта для оформления выставки и проведения внеклассного мероприятия.

  • Слайд 3

    Конус

    Расширить кругозор учащихся, стимулировать их познавательную активность и Все замечательные кривые - эллипс, гипербола и парабола объединяются общим свойством. Каждая из них может быть получена при пересечении конуса плоскостью. Поэтому их называют КОНИЧЕСКИМИ СЕЧЕНИЯМИ творчество.

  • Слайд 4

    Эллипс

    О свойствах эллипсов во всех подробностях могут рассказать специалисты, изучающие движение небесных тел. Согласно закону, открытому в начале XVII в. немецким астрономом Иоганном Кеплером, все планеты движутся вокруг Солнца по орбитам, имеющим форму эллипса.

  • Слайд 5

    Применение свойств эллипса

    Распространение акустических волн используется архитекторами для создания поразительных звуковых эффектов: «говорящих» бюстов, «магического» шёпота, «потусторонних» звуков (рис). Это свойство лежит в основе интересного акустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружений, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

  • Слайд 6

    Парабола

    Парабола обладает оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются направленными параллельно её оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения.

  • Слайд 7

    Гипербола

    Частный случай гиперболы – зона слышимости звука пролетающего самолёта. Если самолёт движется со сверхзвуковой скоростью, то в воздухе зона слышимости образует конус. Поверхность Земли может приближённо считаться плоскостью, рассекающей этот конус.

  • Слайд 8

    Спираль Архимеда

    По спирали Архимеда идёт, например, звуковая дорожка. Одна из деталей швейной машинки – механизм для равномерного наматывания нити на шпульку – имеет форму спирали Архимеда

  • Слайд 9

    Циклоида

    Движение шарика происходит по циклоиде, и, следовательно, на период его колебаний не влияет отклонения шарика от вертикали, т.е. амплитуда колебаний. В 1696 году Даниил Бернулли (1700-1782) швейцарский учёный открыл другое замечательное свойство этой кривой. По циклоиде при отсутствии трения частица под действием силы тяжести скатывается из заданной точки в другую за наименьшее время. Это кривая наибыстрейшего спуска. Иначе говоря, скатываясь по снежной горке, профиль которой выполнен в виде циклоиды, мы окажемся у основания горки быстрее, чем в случае другой формы горки.

  • Слайд 10

    Кардиоида и улитка Паскаля

    Понаблюдаем за какой-нибудь точкой окружности, когда последняя катится по внешней стороне неподвижной окружности равного радиуса. Траекторией точки будет КАРДИОИДА. Такое название она получила из-за сходства с сердцем (греческое слово «кардио» означает «сердце»). Если, точку, описывающую кривую, взять не на самой окружности, а несколько сбоку, то получим кривую, называемую улиткой Паскаля. Улитка Паскаля применяется для вычерчивания профиля эксцентрика, если требуется, чтобы скользящий по профилю стержень совершал гармонические колебания. Такие механизмы отличаются плавностью возвратно-поступательного движения стержня (например, в механике автомашин).

Посмотреть все слайды

Сообщить об ошибке