Презентация на тему "Золотое сечение — гармония математики" 6 класс

Презентация: Золотое сечение — гармония математики
Включить эффекты
1 из 19
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.3
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Золотое сечение — гармония математики"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 19 слайдов. Средняя оценка: 3.3 балла из 5. Также представлены другие презентации по математике для 6 класса. Скачивайте бесплатно.

Содержание

  • Презентация: Золотое сечение — гармония математики
    Слайд 1

    Золотое сечение - Учитель математики МОУ СОШ № 4 с углубленным изучением отдельных предметов Прийма Т.Б. гармония математики pptcloud.ru

  • Слайд 2

    Содержание:

    Вступление История «Золотого сечения» Математическое понимание гармонии Понятие «Золотое сечение» «Золотое сечение» - гармония математики Золотое сечение в геометрии Вывод

  • Слайд 3

    Вступление

    В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались многие ученые. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным. Что же такое «золотое сечение»?

  • Слайд 4

    История «Золотого сечения»

    В Древнем Египте существовала «система правил гармонии», основанная на Золотом Сечении. В Древней Греции Золотое Сечение было своеобразным каноном культуры, который пронизывает все сферы науки и искусства. Красота и гармония стали важнейшими категориями познания. В толковании древних греков понятие золотого сечения, и понятие гармонии идентичны. Согласно Пифагоругармония имеет численное выражение, то есть, она связана с концепцией числа. Евклид излагает теорию Платоновых тел, которая является существенным разделом геометрической теории Золотого Сечения. Теория гармонии Древних

  • Слайд 5

    Два главных Платоновых тела, додекаэдр и икосаэдр, основаны на Золотом Сечении. Икосаэдр и додекаэдр

  • Слайд 6

    Ряд Фибоначчи

    С историей золотого сечения связано имя итальянского математика Леонардо Фибоначчи. Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Каждый член последовательности, начиная с третьего, равен сумме двух предыдущих, а отношение смежных чисел ряда приближается к отношению золотого деления. Все исследователи золотого деления в растительном и в животном мире, искусстве, неизменно приходили к ряду Фибоначчи как арифметическому выражению закона золотого деления.

  • Слайд 7

    «Золотая Пропорция» - главный эстетический принцип эпохи Средневековья

    Эпоха Возрождения ассоциируется с именами таких «титанов», как Леонардо да Винчи, Микеланджело, Рафаэль, Николай Коперник, Альберт Дюрер, Лука Пачоли. Имеется много авторитетных свидетельств о том, что именно Леонардо да Винчи(1452-1519) был одним из первых, кто ввел сам термин «Золотое Сечение». Доказано, что во многих своих произведениях Леонардо да Винчи использовал пропорции золотого сечения, в частности, в своей всемирно известной фреске «Тайная вечеря» и непревзойденной «Джоконде.

  • Слайд 8

    «Витрувийский человек» Леонардо да Винчи

    Разрабатывая правила изображения человеческой фигуры, Леонардо да Винчи пытался на основе литературных сведений древности восстановить так называемый «квадрат древних». Он выполнил рисунок, в котором показано, что размах вытянутых в сторону рук человека примерно равен его росту, вследствие чего фигура человека вписывается в квадрат и в круг. При исследовании рисунка можно заметить, что комбинация рук и ног в действительности составляет четыре различных позы. Рисунок и текст иногда называют каноническими пропорциями.

  • Слайд 9

    Вклад Кеплера в теорию Золотого Сечения

    Гениальный астроном Иоганн Кеплер (1571-1630) был последовательным приверженцем Золотого Сечения, Платоновых тел и Пифагорейской доктрины о числовой гармонии Мироздания. Считается, что именно Кеплер обратил внимание на ботаническую закономерность филлотаксиса и установил связь между числами Фибоначчи и золотой пропорцией, доказав, что последовательность отношений соседних чисел Фибоначчи: 1/1; 2/1; 3/2; 5/3 ;8/5; 13/8;…в пределе стремится к золотой пропорции

  • Слайд 10

    Математическое понимание гармонии

    «Гармония – соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия» -Большая Советская Энциклопедия Математическая гармония - это равенство или соразмерность частей с друг другом и части с целым. Понятие математической гармонии тесно связано с понятиями пропорции и симметрии.

  • Слайд 11

    Понятие «Золотое сечение»

    a : b = b : cилис : b = b : а Золотое сечение- деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

  • Слайд 12

    Эта пропорция равна: Золотое сечение в процентах

  • Слайд 13

    Число j является положительным корнем квадратного уравнения: x2 = x + 1 подставим корень j вместо x и разделим на j : Если продолжить такую подстановку бесконечное число раз, то получим цепную дробь: Аналогично, если взять корень квадратный из правой и левой частей тождества (1) то получим представление золотой пропорции в «радикалах»: (2) (3) (1) (4) Эти формулы (3) и (4) доставляют «эстетическое наслаждение» и вызывают неосознанное чувство ритма и гармонии… «Золотое сечение» - гармония математики

  • Слайд 14

    Дано:отрезок АВ. Построить:золотое сечение отрезка АВ, т.е. точку Е так, чтобы . Построение. Построим прямоугольный треугольник, у которого один катет в два раза больше другого. Для этого восстановим в точке В перпендикуляр к прямой АВ и на нем отложим отрезок ВС= . Далее, соединим точки А и С, отложим отрезок CD=CB, и наконец AE=AD. Точка Е является искомой, она производит золотое сечение отрезка АВ. Деление отрезка в золотом отношении Золотое сечение в геометрии

  • Слайд 15

    А В С Золотымназывается такой равнобедренный треугольник, основание и боковая сторона которого находятся в золотом отношении: Золотой треугольник

  • Слайд 16

    Прямоугольник, стороны которого находятся в золотом отношении, т.е. отношение длины к ширине даёт число φ, называется золотым прямоугольником. Золотой прямоугольник

  • Слайд 17

    Последовательно отрезая от золотого прямоугольника квадраты и вписывая в каждый по четверти окружности, получаем золотую логарифмическую спираль. Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется спираль Архимеда. Золотая спираль

  • Слайд 18

    Пентаграмма

    Если в пентаграмме провести все диагонали, то в результате получим пятиугольную звезду. Точки пересечения диагоналей в пентаграмме являются точками золотого сечения диагоналей (отношение синего отрезка к зелёному, красного к синему, зелёного к фиолетовому, равны 1.618). При этом эти точки образуют новую пентаграмму FGHKL ипять правильных треугольников (ADC, ADB,EBD, AEC,EBC) Здание военного ведомства США имеет форму пентаграммы и получило название «Пентагон», что значит правильный пятиугольник.

  • Слайд 19

    Вывод

    Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – одно из замечательных проявлений структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Посмотреть все слайды

Сообщить об ошибке