Презентация на тему "Золотое сечение в архитектуре, музыке и искусстве"

Презентация: Золотое сечение в архитектуре, музыке и искусстве
Включить эффекты
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.4
5 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Золотое сечение в архитектуре, музыке и искусстве" в режиме онлайн с анимацией. Содержит 17 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Золотое сечение в архитектуре, музыке и искусстве
    Слайд 1

    Золотое сечение в архитектуре, музыке и искусстве

    Школа №46 ; 2014г Презентация Юсуфова Алана 9 «Б» класс

  • Слайд 2

    Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении)

    Золотое сечение — соотношение двух величин, равное соотношению их суммы к большей из данных величин. Приблизительная величина золотого сечения равна 1,6180339887. В процентном округлённом значении — это деление величины на 62 % и 38 % соответственно.

  • Слайд 3

    Число называется также золотым числом.

    С математической точки зрения, отношение большей части к меньшей в золотом сечении выражается квадратичной иррациональностью и, наоборот, отношение меньшей части к большей

  • Слайд 4

    История золотого сечения

    Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании

  • Слайд 5

    Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления

  • Слайд 6

    Пифагор

    Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников . Платон (427...347 гг. до н.э.) также знал о золотом делении. Платон

  • Слайд 7

    В дошедшей до нас античной литературе золотое деление впервые упоминается в “Началах” Евклида. Во 2-й книге “Начал” (ок. 300 лет до н. э.) дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), и др.

    Евклид

  • Слайд 8

    Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

    Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению”, то получим те или иные выступы фасада.

  • Слайд 9

    Храм Василия Блаженного

    Трудно найти человека, который бы не знал и не видел собора Василия Блаженного на Красной площади. Храм этот особенный; он отличается удивительным разнообразием форм и деталей, красочных покрытий; ему нет равных в нашей стране. Архитектурное убранство всего собора продиктовано определенной логикой и последовательностью развития форм. Исследуя его, пришли к выводу о преобладании в нем ряда золотого сечения. Если принять высоту собора за единицу, то основные пропорции, определяющие членение целого на части, образуют ряд золотого сечения: 1 : j : j 2 : j 3 : j 4 : j 5 : j 6 : j 7, где j =0,618

  • Слайд 10

    Известный русский архитектор М. Казаков в своем творчестве широко использовал “золотое сечение”.

    Его талант был многогранным. Например, “золотое сечение” можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется больницей имени Н.И. Пирогова

  • Слайд 11

    Золотое сечение в пятиконечной звезде Построениезолотогосечения

  • Слайд 12

    Ряд Фибоначчи

  • Слайд 13

    С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи).

    В 1202 г вышел в свет его математический труд “Книга об абаке” (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила “Сколько пар кроликов в один год от одной пары родится”. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, и т.д.

  • Слайд 14

    Отрезав квадрат от прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон a/b=(a+b)/a

  • Слайд 15
  • Слайд 16

    Золотое сечение в картине

  • Слайд 17

    Спасибо за внимание. )

    Источники: http://ru.wikipedia.org/wiki/%D0%97%D0%BE%D0%BB%D0%BE%D1%82%D0%BE%D0%B5_%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5 http://www.abc-people.com/data/leonardov/zolot_sech-txt.htm http://pages.marsu.ru/iac/resurs/gorelysheva/8.html http://www.nachtkabarett.com/theOccult/FibonacciAndHolyWood/ru www.unkillablemonster.ru/?page_id=661

Посмотреть все слайды

Сообщить об ошибке