Презентация на тему "История развития комбинаторики"

Презентация: История развития комбинаторики
Включить эффекты
1 из 15
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "История развития комбинаторики". Презентация состоит из 15 слайдов. Материал добавлен в 2019 году.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.27 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    15
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: История развития комбинаторики
    Слайд 1

    История развития комбинаторики

    Выполнил студент гр.13-04 ИС Ильянов Дмитрий

  • Слайд 2

    Содержание

    Термин «комбинаторика» Готфрид Вильгельм Лейбниц Рассуждения о комбинаторном искусстве Неосуществившаяся мечта Лейбница Искусство предположений Слайд 8 Элиаким Гастингс Мур Tактическаяконфигурация Слайд 11 Термин «тактика» и Джеймс Джозеф Сильвестр Слайд 13 Слайд 14 Спасибо за внимание

  • Слайд 3

    Термин "комбинаторика"

    Термин "комбинаторика" был введён в математический обиход знаменитым Лейбницем. 

  • Слайд 4

    Готфрид Вильгельм Лейбниц

    Готфрид Вильгельм Лейбниц(1.07.1646 - 14.11.1716) - всемирно известный немецкий учёный, занимался философией, математикой, физикой, организовал Берлинскую академию наук и стал её первым президентом. В математике он вместе с И. Ньютоном разделяет честь создателя дифференциального и интегрального исчислений.

  • Слайд 5

    Рассуждения о комбинаторном искусстве

    В 1666 году Лейбниц опубликовал "Рассуждения о комбинаторном искусстве". В своём сочинении Лейбниц, вводя специальные символы, термины для подмножеств и операций над ними находит все k -сочетания из n элементов выводит свойства сочетаний:  , , , - строит таблицы сочетаний до n = k = 12, после чего рассуждает о приложениях комбинаторики к логике, арифметике, к проблемам стихосложения и др.

  • Слайд 6

    Неосуществившаяся мечта Лейбница

    В течение всей своей жизни Лейбниц многократно возвращался к идеям комбинаторного искусства. Комбинаторику он понимал весьма широко, именно, как составляющую любого исследования, любого творческого акта, предполагающего сначала анализ (расчленение целого на части), а затем синтез (соединение частей в целое). Мечтой Лейбница, оставшейся, увы, неосуществлённой, оставалось построение общей комбинаторной теории. Комбинаторике Лейбниц предрекал блестящее будущее, широкое применение.

  • Слайд 7

    Искусство предположений

    В 1713 году было опубликовано сочинение Я. Бернулли "Искусство предположений", в котором с достаточной полнотой были изложены известные к тому времени комбинаторные факты. "Искусство предположений" появилось после смерти автора и не было автором завершено. Сочинение состояло из 4 частей, комбинаторике была посвящена вторая часть, в которой содержатся формулы: для числа перестановок из n элементов, для числа сочетаний (называемого Я. Бернулли классовым числом) без повторений и с повторениямими, для числа размещений с повторениями и без повторений.

  • Слайд 8

    Для вывода формул автор использовал наиболее простые и наглядные методы, сопровождая их многочисленными таблицами и примерами. Сочинение Я. Бернулли превзошло работы его предшественников и современников систематичностью, простотой методов, строгостью изложения и в течение XVIII века пользовалось известностью не только как серьёзного научного трактата, но и как учебно-справочного издания. В работах Я. Бернулли и Лейбница тщательно изучены свойства сочетаний, размещений, перестановок. Перечисленные комбинаторные объекты относятся к основным комбинаторным конфигурациям . В математике в XIX веке появился сначала термин "геометрическая конфигурация" в лекциях по проективной геометрии профессора университета в Страсбурге К.Т. Рейе (1882)

  • Слайд 9

    Элиаким Гастингс Мур

    В 1896 году американский математикЭлиаким Гастингс Мур (1862-1932) ввёл термин тактическая конфигурация в статье "Tacticalmemoranda", понимая под этим термином систему n множеств, содержащих, соответственно, a1, a2, … , a n элементов.

  • Слайд 10

    Tактическаяконфигурация

    Тактическую конфигурацию Мур задаёт квадратной матрицей порядка n, в которой элемент akk, стоящий на главной диагонали, равен числу ak (числу элементов в k-ом множестве); элемент aij (i j) равен числу элементов i-ого множества, инцидентных j -ому множеству. К тактическим конфигурациям Мур относит сочетания, размещения, системы решений задачи Киркмана о 15 школьницах, подгруппы некоторых групп.

  • Слайд 11

    Он демонстрирует широкий спектр задач из геометрии, теории групп, которые приводят к тактическим разложениям или используют тактическиеразложения.Мур обогатил список известных комбинаторных конфигураций построением новых, обобщающих системы троек Штейнера, и системы троек Киркмана. Мур построил системы S[k, l, m], m k l ( m, k, l - натуральные числа), содержащие такие k -сочетания (блоки) из m элементов, что каждое l -сочетание входит точно в одно k -сочетание. Число k -сочетаний в системе S[k, l, m] равно . Мур в своей статье ссылается на Артура Кэли, который подчёркивал высокую значимость тактических задач в алгебре

  • Слайд 12

    Термин «тактика» и Джеймс Джозеф Сильвестр

    Термин "тактика" ввёл в математику английский математик Джеймс Джозеф Сильвестр (1814-1897) в 1861 году. Сильвестр определял тактику как раздел математики, изучающий расположение элементов друг относительно друга. В сфере этого раздела находится, по мнению Сильвестра, теория групп, комбинаторный анализ и теория чисел. Мысли Сильвестра о тактике разделял его друг Артур Кэли.

  • Слайд 13

    Комбинаторика, пройдя многовековой путь развития, обретя собственные методы исследования, с одной стороны, широко используется при решении задач алгебры, геометрии, анализа, с другой стороны, сама использует геометрические, аналитические и алгебраические методы исследования. В конце XVIII века учёные, принадлежащие комбинаторной школе Гинденбурга, попытались построить общую комбинаторную теорию, используя бесконечные ряды. Исследователи этой школы изучили большое количество преобразований рядов: умножение, деление, возведение в степень, извлечение корней, обращение рядов, разложение трансцендентных функций. Использование производящих функций в комбинаторике можно отнести к (уже) классическим традициям.

  • Слайд 14

    В XX веке комбинаторика подверглась мощному процессу алгебраизации благодаря работам Дж.-К. Рота (1964), а затем Р. Стенли. Изучение ими частично упорядоченных множеств, свойств функции Мёбиуса, абстрактных свойств линейной зависимости, выявление их роли при решении комбинаторных задач способствовали обогащению комбинаторных методов исследования и дальнейшей интеграции комбинаторики в современную математику.

  • Слайд 15

    СПАСИБО ЗА ВНИМАНИЕ

Посмотреть все слайды

Сообщить об ошибке