Содержание
-
Слово и понятие
ЛОГИКА
-
ИМЯ
Из слов строятся «здания» наших рассуждений Имена составляют большую часть слов Имя – это выражение языка, обозначающее отдельный предмет, совокупность предметов, свойство или отношение. Логика выделяет важнейшую функцию наших слов – что-то обозначать, и с этой точки зрения почти все они оказываются именами
-
понятие
Язык служит для выражения мыслей Имена не только обозначают те или иные объекты, но выражают также ту или иную мысль. Эта мысль называется понятием. Понятие есть форма мысли, выражаемая именем. Всякое понятие выражается в имени и всякое имя выражает понятие. следует помнить: имя – это выражение языка, а понятие – это мысль. Между именами и понятиями нет жесткой связи одно и то же понятие может выражаться разными именами и одно и то же имя может выражать разные понятия в синонимии, когда два слова выражают одно и то же понятие в омонимии, когда одно слово используется для выражения двух разных понятий
-
Содержание и объем имени (понятия)
Каждое понятие или связанное с ним имя имеют объем и содержание. Содержание понятия – это совокупность тех свойств, которые мыслятся в данном понятии. Объем понятия есть множество тех предметов, каждому из которых принадлежат свойства, входящие в содержание понятия. содержание понятия – это совокупность свойств, а объем понятия – это множество предметов, обладающих этими свойствами.
-
Анаграммы
– это слова, в которых переставлены буквы… Шиамна, теевр, фекри, езежол, лабосак, диропом, соратак, двум, рмео, налеп, докилорк, втекоц, сюртал, кораеж, касим, лукаб, трикса.
-
Классификация понятий
По величине объема разделяются: Единичные - в объем которых входит только один предмет выражаются, как правило, именами собственными или эквивалентными им выражениями Общие - в объем которых входит более одного предмета Пустые - в объем которых не входит ни одного реального предмета есть содержание, т.е. в них мыслится совокупность каких-то свойств, но в окружающем мире нет предметов, которые обладали бы этими свойствами
-
По содержанию разделяются: Конкретные понятия относятся к предметам, вещам, лицам, обладающим самостоятельным существованием самостоятельно существующие предметы и понятия Абстрактные понятия относятся к свойствам или отношениям предметов свойства предметов, существующие только в связи с предметами
-
Задача
У нас есть 9 монет одинакового достоинства, но одна из этих монет фальшивая: она легче, чем настоящие. В нашем распоряжении имеются простые весы с чашками, но без шкалы, которые лишь показывают отношение тяжелее-легче. Каким образом с помощью всего лишь двух взвешиваний выделить фальшивую монету?
-
Отношения между объемами понятий
Если мы попытаемся сравнить между собой объемы различных понятий, то сразу же заметим, что у одних понятий объемы большие, у других – поменьше, что объем одного понятия может включаться в объем другого понятия и т.п. Несравнимые - в содержаниях которых нет ничего общего Сравнимые - содержания которых имеют общие элементы, т.е. имеются какие-то свойства, черты, признаки, которые входят в содержание как одного, так и другого понятия.
-
Совместимые понятия
объемы которых имеют общие элементы, т.е. существуют предметы, которые включаются в объем как одного, так и другого понятия Объем понятия - в виде кругов (круги Эйлера), в центре которых стоит буква (А), представляющая некоторое понятие
-
Пересечение
Отношения между совместимыми понятиями: Пересечение: Объемы двух понятий A и B имеют общую часть –совпадают частично. Объем одного, таким образом, частично входит в объем другого и наоборот. Содержание таких понятий будет разным.
-
Подчинение
Объем понятия B полностью включается в объем понятия A. Иногда отношение подчинения называют «родо-видовым»
-
Тождество
Объемы понятий A и B совпадают, т.е. это одна и та же совокупность предметов, отображаемая с точки зрения разных существенных свойств двумя понятиями.
-
Несовместимые понятия
объемы который не имеют общих элементов Соподчинение Объемы понятий A и B полностью различны, но сравнимы (общие черты). помещаем их в объем более широкого понятия C, видами которого являются эти несовместимые понятия (А,В).
-
Противоположность
предметы, входящие в объемы сравниваемых понятий, стремятся как можно дальше отодвинуться друг от друга, как бы тяготеют к разным полюсам в объеме третьего родового понятия.
-
Противоречие
Два сравниваемых понятия не просто тяготеют к разным полюсам в объеме третьего понятия, но вместе полностью исчерпывают объем этого третьего понятия одно из понятий содержит отрицательную частицу
-
Противоречие (пример)
В каком отношении находятся следующие понятия: A – врач, B – хирург, C – женщина.
-
Пора немного подумать!
На берег реки приехали 3 рыцаря, каждый со своей дамой. У берега реки стоит лодка, способная вместить не более двух человек. Как с помощью этой лодки рыцарям и их дамам переправиться на другой берег, если должно быть выполнено условие: ни одна дама не может оказаться в обществе других рыцарей, если рядом с ней нет ее собственного рыцаря? Лошади переплывают реку сами, дамы способны грести веслами не хуже рыцарей, в лодку входят и из нее выходят по одному, лодка может пересекать реку сколько угодно раз, обратно лодку кто-то должен пригнать и т.п. Попробуйте найти хотя бы один способ переправы
-
Операции с понятиями
Логические операции
-
Неточность, неясность, многозначность
Приводит к ошибкам в рассуждениях, к бесплодным спорам, служат основой софистики и демагогии. Неточным является такое понятие, границы объема которого расплывчаты, неопределенны. Неясными называют понятия с неопределенным содержанием. еще одна особенность нашего повседневного языка - большая часть слов и выражений многозначна, т.е. в разных случаях употребления они получают различные значения
-
Определение понятий
операция- для устранения неясностипонятий и уточнения их содержания Определение - логическая операция, раскрывающая содержание понятия и позволяющая отличать определяемые предметы от других, сходных с ними предметов. Определение говорит о тождестве двух понятий – определяемого и определяющего. Содержание определяемого понятия не известно, и оно раскрывается через известные определяющие понятия.
-
соблюдать некоторые простые правила…
при формулировке определения Определение должно быть соразмерным, т.е. определяемое и определяющее понятия должны быть тождественны по своему объему. Определение должно быть точным и ясным. Определение не должно содержать в себе круга. Дать хорошее определение трудно, но можно хотя бы научиться устанавливать, насколько хорошим является данное вам определение…
-
столкнувшись с определением, задайте себе вопрос:
«Смогу ли я на основании данного определения отличить определяемые предметы от всех остальных предметов?» Задача: В пещере лежат 4 колпака – 2 белых и 2 черных. В пещеру входят три мудреца, которые знают, сколько там лежит колпаков и какого цвета. Но в пещере темно, поэтому мудрецы на ощупь выбирают себе колпак, надевают на голову и по одному выходят из пещеры. Первый идет куда глаза глядят. Второй идет за ним и видит, какого цвета на нем колпак. Третий идет последним и видит, какого цвета колпак на первом и втором. Вопрос: всегда ли среди этих трех мудрецов найдется тот, который догадается, какого цвета на нем колпак, и громко воскликнет: «Я знаю, на мне…!»? Ответ нужно обосновать. Мудрецы не оборачиваются, не разговаривают, они должны догадаться…
-
Деление понятий. Классификация
Для устранения неточности понятий используется другая логическая операция – деление. Деление есть логическая операция, раскрывающая объем понятия посредством разбиения его на виды. В операции деления присутствуют элементы: делимое понятие основание деления – один из признаков предметов, образующих объем делимого понятия, опираясь на который мы производим деление члены деления – те виды, которые получаются в результате деления
-
соблюдать некоторые простые правила…
1. Деление должно быть соразмерным, т.е. сумма членов деления должна быть в точности равна объему делимого понятия. Нарушение этого правила приводит к ошибкам двух видов. а) Неполное деление б) Деление с лишними членами 2. Члены деления должны исключать друг друга, т.е. не иметь общих элементов, быть соподчиненными понятиями, объемы которых не пересекаются. 3. Деление должно производиться только по одному основанию, нельзя в процессе деления заменять один признак, опираясь на который вы начали деление, другим признаком.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.