Презентация на тему "Теорема Гаусса"

Презентация: Теорема Гаусса
Включить эффекты
1 из 7
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Теорема Гаусса" по физике, включающую в себя 7 слайдов. Скачать файл презентации 0.12 Мб. Средняя оценка: 3.0 балла из 5. Большой выбор учебных powerpoint презентаций по физике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    7
  • Слова
    физика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Теорема Гаусса
    Слайд 1

    Теорема Гаусса

  • Слайд 2

    ΔΦ = EΔS cos α = EnΔS Φ - поток вектора напряженности электрического поля.

  • Слайд 3

    Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S В случае замкнутой поверхности всегда выбирается внешняя нормаль.

  • Слайд 4

    Теорема Гаусса утверждает: Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

  • Слайд 5

    Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R. Эта задача имеет осевую симметрию. Из соображений симметрии, электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l, закрытого с обоих торцов

  • Слайд 6

    При r ≥ R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl, так как поток через оба основания равен нулю. Применение теоремы Гаусса дает: где τ– заряд единицы длины цилиндра. Отсюда

  • Слайд 7

    2.определение поля равномерно заряженной плоскости В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает: где σ –поверхностная плотность заряда, то есть заряд, приходящийся на единицу площади.

Посмотреть все слайды

Сообщить об ошибке