Презентация на тему "Щелочные и Щелочноземельные металлы и их роль в организме"

Презентация: Щелочные и Щелочноземельные металлы и их роль в организме
Включить эффекты
1 из 41
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.7
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация по теме "Щелочные и Щелочноземельные металлы" рассказывает о металлах и их роли в организме человека.

Краткое содержание

  • Щелочные и щелочноземельные металлы
  • Общая характеристика
  • Получение
  • Физические свойства
  • Химические свойства
  • Роль металлов в организме человека

Содержание

  • Презентация: Щелочные и Щелочноземельные металлы и их роль в организме
    Слайд 1
  • Слайд 2

    Щелочные металлы

    Щелочные металлы – это элементы главной подгруппы I группы Периодической системы химических элементов Д. И. Менделеева: литийLi, натрийNa, калийK, рубидийRb, цезийCs и францийFr. Эти металлы получили название щелочных, потому что большинство их соединений растворимо в воде. По-славянски «выщелачивать» означает «растворять», это и определило название данной группы металлов. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами.

  • Слайд 3

    Общая характеристика

  • Слайд 4

    Нахождение в природе

    • Li: Li2O • Al2O3 • 4SiO2 – сподумен
    • Na: NaCl - каменная соль
    • Na2SO4 • 10H2O- глауберова соль (мирабилит)
    • NaNO3 – чилийская селитра
    • K: KCl • NaCl – сильвинит
    • KCl • MgCl2 • 6H2O – карналлит
    • K2O • Al2O3 • 6SiO2 – полевой шпат (ортоклаз)
    • Сподумен
    • Карналлит
    • Каменная соль
  • Слайд 5

    Получение Лития

    • В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси).
    • 2LiCl(ж) = 2Li + Cl2
    • В дальнейшем полученный литий очищают методом вакуумной дистилляции.
  • Слайд 6

    Получение Натрия

    • Первым способом получения натрия стала реакция восстановления карбоната натрия углем при нагревании тесной смеси этих веществ в железной ёмкости до 1000°C:
    • Na2CO3+2C=2Na+3CO
    • Затем появился другой способ получения натрия — электролиз расплава едкого натра или хлорида натрия.
  • Слайд 7

    Получение Калия

    • Калий, как и другие щелочные металлы, получают электролизом расплавленных хлоридов или щелочей. Так как хлориды имеют более высокую температуру плавления (600—650 °C), то чаще проводят электролиз расправленных щелочей с добавкой к ним соды или поташа (до 12 %). При электролизе расплавленных хлоридов на катоде выделяется расплавленный калий, а на аноде — хлор:K+ + e− → K2Cl− − 2e− → Cl2
    • При электролизе щелочей на катоде также выделяется расплавленный калий, а на аноде — кислород:4OH− − 4e− → 2H2O + O2
    • Вода из расплава быстро испаряется. Чтобы калий не взаимодействовал с хлором или кислородом, катод изготовляют из меди и над ним помещают медный цилиндр. Образовавшийся калий в расплавленном виде собирается в цилиндре.
  • Слайд 8

    Получение Рубидия

    • Большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов RbAl(SO4)2·12H2O, KAl(SO4)2·12H2O, CsAl(SO4)2·12H2O. Смесь разделяют многократной перекристаллизацией.
    • Рубидий также выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля. Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия. При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs3[Sb2Cl9]. Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозёма из нефелина.
    • Для извлечения рубидия используют методы экстракции и ионообменной хроматографии. Соединения рубидия высокой чистоты получают с использованием полигалогенидов.
  • Слайд 9

    Получение Цезия

    • Существует несколько лабораторных методов получения цезия. Он может быть получен:
    • нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
    • разложением азида цезия в вакууме;
    • нагревом смеси хлорида цезия и специально подготовленного кальция.
    • Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.
  • Слайд 10

    Получение Франция

    Микроскопические количества франция-223 и франция-224 могут быть химически выделены из минералов урана и тория. Другие изотопы франция получают искусственным путём с помощью ядерных реакций.

  • Слайд 11

    Физические свойства

    • В виде простых веществ - мягкие, серебристо белые металлы, цезий имеет золотисто-желтый цвет. Плотности лития, натрия и калия меньше плотности воды ( 1 г/см3), температура плавления плавно уменьшается от лития (180оС) к цезию (28оС). Так же изменятся и температура кипения - от 1337оС у лития до 668оС у цезия. Твердость щелочных металлов мала - они легко режутся ножом.
    • В видимой области спектра в парах щелочные металлы имеют интенсивные линии излучения: натрий - желтую, литий - карминово-красную, калий - фиолетовую, рубидий - красную, цезий - голубую. Это позволяет распознавать эти металлы с помощью пламенной фотометрии.
  • Слайд 12

    Химические свойства

    • Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, азоту их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.
    • Щелочные металлы обладают следующими свойствами:
    • 1)Взаимодействие с водой. Важное свойство щелочных металлов – их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:
    • 2Li + 2H2O => 2LiOH + H2
    • При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.
    • 2)Взаимодействиес кислородом. Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.
  • Слайд 13
    • 4Li + O2=> 2Li2O(оксид лития)
    • 2Na + O2=> Na2O2(пероксид натрия)
    • K + O2=> KO2(надпероксид калия)
    • 3)В реакциях с другими неметаллами образуются бинарные соединения:
    • 2Li + Cl2=> 2LiCl(галогениды)
    • 2Na + S => Na2S(сульфиды)
    • 2Na + H2=> 2NaH(гидриды)
    • 6Li + N2=> 2Li3N(нитриды)
    • 2Li + 2C => 2Li2C2(карбиды)
    • 4)Взаимодействиес другими веществами.При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) реагируют щелочные металлы с кислотами.
    • Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:
  • Слайд 14
    • 2Na + 2NH3 => 2NaNH2 + H2
    • При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:
    • KNH2 + H2O => KOH + NH3
    • Щелочные металлы взаимодействуют с органическими веществами- спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):
    • 2Na + 2CH3CH2OH => 2CH3CH3ONa + H2
    • 2Na + 2CH3COOH => 2CH3COONa + H2
    • 5)Качественная реакция на катионы щелочных металлов - окрашивание пламени в следующие цвета:
    • Li+ - карминово-красный; Na+ - жёлтый
    • K+, Rb+, Cs+ - фиолетовый
  • Слайд 15
    • Оксиды щелочных металловобладают всеми свойствами, присущими основнымоксидам: они реагируют с водой, кислотными оксидами и кислотами:
    • Li2O + H2O => 2LiOH
    • K2O + SO3 => K2SO4
    • Na2O + 2HNO3 => 2NaNO3 + H2O
    • Пероксиды и надпероксиды проявляют свойства сильных окислителей:
    • Na2O2 + 2NaI + 2H2SO4 => I2 + 2Na2SO4 + 2H2O
    • Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:
    • Na2O2 + 2H2O => 2NaOH + H2O2
    • 2KO2 + 2H2O => 2KOH + H2O2 + O2
  • Слайд 16

    Роль металлов в организме человека

    • В течение суток в организм взрослого человека поступает около 100 мкг лития. Ионы лития Li+ быстро и практически полностью абсорбируются из желудочно-кишечного тракта, по-видимому, из тонкого кишечника, а также из мест парентерального введения. Ионы лития легко проникают через биологические мембраны. Среднее содержание лития (в мкг/г), в различных органах значительно различается: в лимфоузлах – 200, легких – 60, печени – 7, цельной крови – 6, мышцах – 5, мозге – 4. Литий можно обнаружить в костях, кишечнике, надпочечниках и других тканях. Выведение лития осуществляется преимущественно через почки и в меньшей степени с калом и потом.В организме литий, по-видимому, способствует высвобождению магния из клеточных «депо» и тормозит передачу нервного импульса, тем самым, снижая возбудимость нервной системы.
    • Имеются данные о воздействии лития на структурные компоненты организма на различных уровнях. Одним из органов-мишеней лития может быть скелет и щитовидная железа. В костной ткани при длительном воздействии лития его концентрация оказывается более высокой, чем в других органах. Скелет, несомненно, является местом активного взаимодействия лития с магнием, кальцием и другими минеральными компонентами костной ткани.Имеются данные о влиянии лития на нейро-эндокринные процессы, жировой и углеводный обмен. В обменных процессах литий активно взаимодействует с ионами K+ и Na+ .
  • Слайд 17
    • Назначение препаратов лития на фоне дефицита натрия опасно для здоровья, т.к. может вызывать поражение почек. Кроме того, к побочным эффектам терапии препаратами лития, можно отнести угнетение функции щитовидной железы путем блокирования литием высвобождения ТТГ-рилизинг фактора, ТТГ и тироксина. Под влиянием лития возрастает поглощение глюкозы, синтез гликогена и уровень инсулина в сыворотке крови больных диабетом, применяющих препараты лития, снижается уровень глюкозы и кетоновых тел в моче. Литий обладает инсулиноподобным эффектом.
    • Токсическая доза для человека: 92-200 мг.
    • Летальная доза для человека: данные отсутствуют.
  • Слайд 18
    • Натрий широко распространен во всех органах, тканях и биологических жидкостях организма человека.
    • В противоположность калию, большая часть натрия находится во внеклеточных жидкостях - около 50%, в костях и хрящах - около 40% и менее 10% - внутри клеток.
    • Натрий играет важную роль в процессе внутриклеточного и межклеточного обмена. Вместе с калием натрий участвует в возникновении нервного импульса, играет роль в механизме кратковременной памяти, влияет на состояние мышечной и сердечно-сосудистой систем; ионы натрия и хлора также играют важную роль в секреции соляной кислоты в желудке.
    • Соотношение ионов натрия и калия выполняют два важных взаимосвязанных процесса: поддерживают постоянное осмотическое давление и постоянный объем жидкости. Потребление натрия в большом количестве ведет к потере калия. Именно для этого важное значение имеет сбалансированное поступление в организм как калия, так и натрия.
    • Суточная потребность человека, как правило, перекрывается потреблением поваренной соли, которая является основным источником натрия. В сутки человек употребляет 10-12 г поваренной соли, в том числе в хлебе и натуральных пищевых продуктах.
  • Слайд 19
    • Ряд ученых высказывают мнение, что количество потребляемой соли в сутки должно быть значительно меньше и ограничиваться содержанием ее в продуктах питания. Считается, что употребление большого количества поваренной соли является одной из основных причин развития гипертонической болезни.
    • В тоже время отмечается, что потребность в натрии увеличивается пропорционально его потере с мочой и потом. При значительных физических нагрузках, особенно в жаркое время года или во время работы в горячих цехах, потребность в поваренной соли возрастает до 20 г в сутки.
    • Всасывание натрия при поступлении в организм человека начинается уже в желудке и происходит в основном в тонком кишечнике.
    • Недостаточность натрия в организме (гипонатриемия) развивается:
    • при недостаточном поступлении натрия в организм с пищей (при анорексии, заболеваниях пищеварительного тракта, бессолевой диете и др.)
    • при избыточном выведении натрия почками (почечная недостаточность, гипокортицизм, лечение диуретиками)
    • при избыточном выведении натрия через кожу (длительное обильное потоотделение, обширные ожоги кожи)
    • при потере натрия (повторные рвоты, поносы, удаление жидкости при асците, гидротораксе)
  • Слайд 20
    • При избыточном поступлении в организм воды или при патологической задержке ее в организме (при сердечной недостаточности, циррозах печени и др.), при которых развивается так называемая гипонатриемия от разведения, хотя общее количество натрия в организме может быть нормальным или даже повышенным.
    • Проявляется гипонатриемия при суточном поступлении натрия с пищей менее 0,5 г следующими признаками: сухая кожа со сниженными эластичностью и тургором, нередко судороги в мышцах голеней, ано-рексия, жажда, тошнота и рвота, апатия, сонливость, иногда спутанность сознания. Отмечается значительное снижение артериального давления, тахикардия. Выделение мочи резко снижено или отсутствует (олигурия или анурия). Лечение проводят только в плане комплексной терапии с учетом основной патологии, которая вызвала гипонатриемию.
    • При избыточном употреблении в пищу поваренной соли отмечается задержка в организме жидкости, которая затрудняет работу сердца и почек, может вызвать повышение артериального давления. В этих случаях резко ограничивают в суточном рационе количество поваренной соли ("бессолевая диета") для больных с сердечно-сосудистой недостаточностью, гипертонической болезнью и рядом заболеваний почек. В такой диете количество хлоридов натрия ограничивается содержанием в натуральных продуктах (0,5-3 г в сутки).
    • В медицинской практике используются растворы натрия хлорида, чаще 0,9% раствор для приготовления растворов различных лекарственных препаратов и для внутривенного введения по медицинским показаниям.
  • Слайд 21
    • Калий, как и натрий, играет большую роль в образовании буферных систем, предотвращающих сдвиги реакции среды и обеспечивающих их постоянство. Калий относится к основным внутриклеточным катионам, являясь необходимым компонентом внутриклеточной среды всех живых организмов. В организме человека около 98% калия находится внутри клеток тканей. Для всех тканей характерно определенное соотношение концентраций между калием и натрием, который содержится преимущественно во внеклеточной среде.
    • В некоторых физиологических процессах калий выступает как антогонист натрия: увеличение концентрации калия в организме приводит к выведению из организма натрия. Соединения калия оказывают влияния на коллоидное состояние тканей, способствуют выведению из организма жидкости. Это свойство калия используют в так называемых "калиевых диетах" (диета с повышенным содержанием калия) при сердечно-сосудистой и почечной недостаточности для повышения мочевыделения и выведения натрия.
    • Общее содержание калия в организме человека составляет 160-250 г. Но это количество меняется в зависимости от возраста, пола, конституции человека. Эти сдвиги связаны и с изменением клеточной массы тела.
    • Калий в основном содержится в растительных продуктах питания, с которыми поступает в организм человека.
    • Наиболее богаты содержанием калия: соя, фасоль, горох.
  • Слайд 22
    • Существенными источниками калия являются крупы, картофель, хлеб, абрикосы, персики, бананы и другие продукты.
    • Суточная потребность калия для взрослого человека 2-3 г в сутки, а для ребенка - 16-30 мг на кг массы тела. Необходимый минимум потребления калия для человека в сутки составляет около 1 г. При нормальном пищевом рационе суточная потребность в калии полностью удовлетворяется, но отмечаются еще сезонные колебания в потреблении калия. Так, весной его потребление невысоко - около 3 г/сутки, а осенью максимальное потребление - 5-6 г/сутки.
    • Для нормального обмена веществ в пищевом рационе должно выдерживаться соотношение между калием и натрием - 1:2.
    • Учитывая тенденцию современных людей к употреблению с пищей большого количества поваренной соли, также возрастает и потребность в калии, который может нейтрализовать неблагоприятное влияние избытка количества натрия на организм.
    • Недостаток поступления калия с пищей может привести к дистрофии даже при нормальном содержании белков в рационе. Нарушение обмена калия проявляется при хронических заболеваниях почек и сердечно-сосудистой системы, при заболеваниях желудочно-кишечного тракта (особенно, сопровождающихся поносом и рвотой), при заболевании желез внутренней секреции и другой патологии.
  • Слайд 23
    • Недостаток калия в организме проявляется прежде всего нарушениями нервно-мышечной и сердечнососудистой систем (сонливость, нарушение движений, дрожание конечностей, замедленное сердцебиение). В лечебных целях применяются препараты калия.
    • Избыток калия наблюдается значительно реже, но представляет собой крайне опасное состояние: вялые параличи конечностей, изменения со стороны сердечно-сосудистой системы. Такое состояние может проявляться при выраженном обезвоживании организма, гиперкортицизме с нарушением функции почек и при введении больному большого количества калия.
  • Слайд 24
    • Цезий и рубидий относят к малоизученым микроэлементам. Эти элементы находятся в окружающей среде и поступают в организм различными путями, в основном с пищей. Установлено их постоянное наличие в организме. Однако до сих пор эти элементы не считаются биотическими.
    • Рубидий и цезий найдены во всех исследованных органах млекопитающих и человека. Поступая в организм с пищей, они быстро всасываются из желудочно-кишечного тракта в кровь. Средний уровень рубидия в крови составляет 2,3-2,7 мг/л, причем его концентрация в эритроцитах почти в три раза выше, чем в плазме. Рубидий и цезий весьма равномерно распределяется в органах и тканях, причем, рубидий, в основном, накапливается в мышцах, а цезий поступает в кишечник и вновь реабсорбируется в нисходящих его отделах.
    • Известна роль рубидия и цезия в некоторых физиологических процессах. В настоящее время установлено стимулирующее влияние этих элементов на функции кровообращения и эффективность применения их солей при гипотониях различного происхождения. Исходя из выраженного гипертензивного и сосудосуживающего действия, соли цезия еще в 1888 г. впервые были применены С.С.Боткиным при нарушениях функции сердечно-сосудистой системы. В лаборатории И.П.Павлова С.С.Боткиным было установлено, что хлориды цезия и рубидия вызывают повышение артериального давления на длительное время и, что это действие связано, главным образом, с усилением сердечно-сосудистой деятельности и сужением периферических сосудов.
  • Слайд 25
    • Установлено адреноблокирующее и симпатомиметическое действие солей цезия и рубидия на центральные и периферические адренореактивные структуры, которое особенно ярко выражено при подавлении тонуса симпатического отдела центральной нервной системы и дефиците катехоламинов. Солям этих металлов свойственен, главным образом, бетта-адреностимулирующий эффект.
    • Соли рубидия и цезия оказывают влияние на неспецифические показатели иммунобиологической резистентности - они вызывают значительное увеличение титра комплемента, активности лизоцима, фагоцитарной активности лейкоцитов. Есть указание на стимулирующее влияние солей рубидия и цезия на функции кроветворных органов. В микродозах они вызывают стимуляцию эритро- и лейкопоэза (на 20-25%), заметно повышают резистентность эритроцитов, увеличивают содержание гемоглобина в них.
    • Хлорид рубидия и хлорид цезия участвуют в газовом обмене, активируя деятельность окислительных ферментов, соли этих элементов повышают устойчивость организма к гипоксии.
    • Франций. Соль франция FrCl использовалась для обнаружения раковых опухолей, но по причине чрезвычайно высокой стоимости эту соль в масштабных разработках использовать невыгодно.
  • Слайд 26

    Щелочноземельные металлы

    Щёлочноземельные металлы — химические элементы: кальцийCa, стронцийSr, барийBa, радийRa. Названы так потому, что их оксиды — «земли» (по терминологии алхимиков) — сообщают воде щёлочную реакцию. Соли щёлочноземельных металлов, кроме радия, широко распространены в природе в виде минералов.

  • Слайд 27

    Общая характеристика

  • Слайд 28

    Нахождение в природе

    • Ca: CaCO3 – кальцит (известняк, мрамор и др.)
    • Ca3(PO4)2 – апатит, фосфорит
    • CaSO4 • 2H2O – гипс
    • CaSO4 – ангидрит
    • CaF2 – плавиковый шпат (флюорит)
    • Sr: SrSO4 – целестин
    • SrCO3 – стронцианит
    • Ba: BaSO4 – барит
    • BaCO3 – витерит
    • Барит
    • Целестин
    • Ангидрит
  • Слайд 29

    Получение

    • Свободный металлический кальций получают электролизом расплава, состоящего из CaCl2 (75-80 %) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C:
    • 4CaO + 2Al => CaAl2O4 + 3Ca
    • СаCl2 => Ca + Cl2
  • Слайд 30
    • Существуют три способа получения стронция:
    • термическое разложение некоторых соединений
    • электролиз
    • восстановление оксида и хлорида
    • Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.
    • 4SrO+ 2Al => 3Sr+ SrO·Al2O3
    • Электролитическое получение стронция электролизом расплава смеси SrCl2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.
    • При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.
  • Слайд 31
    • Основное сырье для получения бария — баритовый концентрат (80-95 % BaSO4), который в свою очередь получают флотацией барита. Сульфат бария в дальнейшем восстанавливают коксом или природным газом:
    • BaSO4 + 4С = BaS + 4CO↑
    • BaSO4 + 2CH4 = BaS + 2С + 4H2O↑
    • Далее сульфид при нагревании гидролизуют до гидроксида бария Ba(OH)2 или под действием CO2 превращают в нерастворимый карбонат бария BaCO3, который затем переводят в оксид бария BaO (прокаливание при 800 °C для Ba(OH)2 и свыше 1000 °C для BaCO3):
    • BaS + 2H2O = Ba(OH)2 + H2S↑
    • BaS + H2O + CO2 = BaCO3 + H2S↑
    • Ba(OH)2 = BaO + H2O↑
    • BaCO3 = BaO + CO2↑
    • Металлический барий получают из оксида восстановлением алюминием в вакууме при 1200-1250°С:
    • 4BaO + 2Al = 3Ba + BaAl2O4
    • Очищают барий перегонкой в вакууме или зонной плавкой.
  • Слайд 32

    Получить чистый радий в начале ХХ в. стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало ХХ в. в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

  • Слайд 33

    Физические свойства

    Внешне – серебристо-белые блестящие металлы, твердость значительно выше, чем у щелочных металлов. Твердость по группе уменьшается сверху вниз, барий по твердости близок к свинцу. Температуры плавления щелочноземельных металлов выше, чем у щелочных и составляют: для кальция 851оС, стронция 770оС, бария 710оС. Плотности щелочноземельных металлов в подгруппе сверху вниз увеличиваются и равны для Са, Sr и Ва, соответственно 1,54, 2,63 и 3,76 г/см3.

  • Слайд 34

    Химические свойства

    • 1)Реакция с водой. Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являются сильными основаниями:
    • Ca + 2H2O => Ca(OH)2 + H2
    • 2)Реакция с кислородом. Все металлы образуют оксиды RO, барий-пероксид – BaO2.
    • Ba + O2=> BaO2
    • 3)С другими неметаллами образуются бинарные соединения:
    • Ba + S => BaS(сульфиды)
    • Ca + H2=> CaH2(гидриды)
    • Ca + 2C => CaC2(карбиды)
    • 3Ba + 2P => Ba3P2(фосфиды)
  • Слайд 35
    • 4) Все металлы растворяются в кислотах:
    • Ca + 2HCl => CaCl2 + H2
    • 5)Качественная реакция на катионы щелочноземельных металлов – окрашиваниепламени в следующие цвета:
    • Ca2+ - темно-оранжевый
    • Sr2+- темно-красный
    • Ba2+ - светло-зеленый
  • Слайд 36

    Роль металлов в организме человека

    • Наряду с пластической и структурной функциями (основа минерального компонента костной ткани), кальций играет решающую роль в осуществлении многих физиологических и биохимических процессов. Он необходим для нормальной возбудимости нервной системы и сократимости мышц, является активатором ряда ферментов и гормонов и важнейшим компонентом свертывающей системы крови.
    • Содержание кальция в организме взрослого человека - около 20 г на 1 кг массы тела, а у новорожденного - 9 г на 1 кг массы тела. Около 99% всего кальция, находящегося в организме человека, содержится в костной и хрящевой тканях в виде различных соединений. Остальная часть кальция содержится внутри клеток мягких тканей и во внеклеточной жидкости.
    • Необходимая суточная доза потребления кальция с пищей для взрослого человека составляет 0,8-1,1 г. Однако, надо учитывать, что не все формы кальция, содержащиеся в пище, легко усваиваются организмом.
    • Усвоение кальция идет очень трудно. Соединения кальция нерастворимы в воде, а поэтому, попадая с пищей в организм человека лишь частично переходят в растворимые соединения под влиянием желудочного сока и щелочной среды тонкого кишечника. Только желчные кислоты способны перевести большую часть кальция в усвояемые формы. Считается, что наиболее усвояемые формы кальция содержатся в молоке, а поэтому сбалансированный рацион должен включать в себя не менее 0,5 л молока в сутки.
  • Слайд 37
    • Выводится кальций из организма в зависимости от характера пищи, с которой поступает. В растущем организме процесс окостенения происходит при нормальном соотношении между кальцием и фосфором в суточном пищевом рационе. Регулирует это соотношение витамин Д.
    • Пониженное содержание кальция в организме человека (гипокальциемия) наблюдается при нарушении функции паращитовидных желез (гипопаратиреоидизме), нарушении всасывания в кишечнике, недостаточном выделении желчи и других заболеваниях. Гипокальциемия проявляется: тетанией (повышенная возбудимость нервной системы, проявляющаяся судорожными приступами), трофическими нарушениями, катарактой, выкрашиванием зубов, выпадением волос.
    • Повышенное содержание кальция в организме человека (гиперкальциемия) наблюдается при избыточном введении солей кальция, повышенном их всасывании из кишечника, снижении выделения кальция через почки, при повышенном употреблении витамина Д и ряде заболеваний. Проявляется гиперкальциемия задержкой роста, ухудшением аппетита, рвотой, запорами, жаждой, повышенным мочевыделением, снижением тонуса мышц, повышением рефлексов, ухудшением памяти, реже - спутанностью сознания. Возможно отложение кальция в сосудах почек, в органах и даже в роговице глаз.
    • Кроме медикаментозных препаратов, назначаемых при гипокальциемии и недостатке кальция в пищевом рационе, кальций входит наравне с другими химическими элементами в комплексы поливитаминов.
  • Слайд 38
    • Вместе с пищей в организм взрослого человека поступает 0,8–3,0 мг стронция в сутки. При избыточном поступлении стронция возникает так называемый «стронциевый рахит» или «уровская болезнь». Это эндемическое заболевание, впервые обнаруженное у населения, проживающего вблизи реки Уров в Восточной Сибири. «Уровская болезнь» возникает вследствие вытеснения ионов кальция ионами стронция из костной ткани или повышенного поступления в организм стронция на фоне дефицита кальция. Накопление в организме стронция приводит к поражению всего организма, однако наиболее типичным для этого заболевания является развитие дистрофических изменений костно-суставной системе в период роста и развития организма (формируется симметричный деформирующий остеопороз из-за торможения роста костей со стороны метаэпифизарных хрящей). Болезнь впервые описана у человека российскими врачами Н.М. Кашиным и Е.В. Беком в 1895-1900 гг (второе название уровской болезни – болезнь Кашина-Бека). Как правило, это заболевание сопровождается выраженным нарушением фосфорно-кальциевого соотношения в крови, дисбактериозом кишечника.
    • Стронций, поступающий с пищей, относительно плохо усваивается организмом (около 5-10%). В основном богаты стронцием растительные продукты, а также кости и хрящи. Абсорбция стронция происходит в основной, 12-перстной и подвздошной кишке. Абсорбированный в организме стронций затем выводится, в основном с мочой, в меньшей степени с желчью. В фекалиях находится неабсорбированный стронций.
  • Слайд 39
    • В организме взрослого человека массой 70 кг находится около 320 мг стронция, причем его основное количество (до 99%) депонировано в костях. Относительно высоки концентрации стронция в лимфатических узлах (0,30±0,08 мкг/г), легких (0,20±0,02), яичниках (0,14±0,06), печени и почках (0,1±0,03). В цельной крови обнаружено 0,02±0,002 мкг/мл стронция.
    • Токсическая доза для человека: не токсичен.
    • Летальная доза для человека: нет данных.
  • Слайд 40
    • Барий относится к токсичным ультрамикроэлементам. Содержание бария в организме взрослого человека составляет около 20 мг, среднесуточное поступление лежит в пределах 0,3-1 мг. Всасываемость растворимых солей бария в желудочно-кишечном тракте составляет около 10%, иногда этот показатель доходит до 30%. В дыхательных путях резорбция достигает 60-80%. Содержание бария в плазме крови изменяется параллельно изменениям концентрации кальция. В незначительных количествах барий находится во всех органах и тканях, однако всего его больше в головном мозге, мышцах, селезенке и хрусталике глаза. Около 90% всего содержащегося в организме бария концентрируется в костях и зубах.
    • Установлено, что при ишемической болезни сердца, хронической коронарной недостаточности, заболеваниях органов пищеварения содержание бария в тканях снижается. Даже в ничтожных концентрациях барий оказывает выраженное влияние на гладкие мышцы.
    • Токсическая доза для человека: 200 мг.
    • Летальная доза для человека: 3,7 г.
  • Слайд 41

    Радий чрезвычайно радиотоксичен. В организме он ведёт себя подобно кальцию — около 80 % поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей и кроветворной ткани. Опасность представляет также радон — газообразный радиоактивный продукт распада радия.

Посмотреть все слайды

Сообщить об ошибке