Содержание
-
ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
Лекция 3 1
-
Классификация интеллектуальных информационных систем
Определение интеллектуальной информационной системы Классификация интеллектуальных систем 2
-
Определение интеллектуальной информационной системы
Существует большое множество интеллектуальных информационных систем (ИИС). Однако общепринятого единого определения интеллектуальной информационной системы нет. 3
-
Интеллектуальной информационной системой называют автоматизированную информационную систему, основанную на знаниях, или комплекс программных, лингвистических и логико-математических средств для реализации основной задачи – осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке. 4
-
Кроме того, информационно-вычислительными системами с интеллектуальной поддержкой для решения сложных задач называют те системы, в которых логическая обработка информации превалирует над вычислительной. Таким образом, любая информационная система, решающая интеллектуальную задачу или использующая методы искусственного интеллекта, относится к интеллектуальным 5
-
Для интеллектуальных информационных систем характерны следующие признаки: развитые коммуникативные способности; умение решать сложные плохо формализуемые задачи; способность к самообучению; адаптивность. 6
-
Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой, в частности возможность формулирования произвольного запроса в диалоге с ИИС на языке, максимально приближенном к естественному. 7
-
Сложные плохо формализуемые задачи – это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний. 8
-
Способность к самообучению – это возможность автоматического извлечения знаний для решения задач из накопленного опыта конкретных ситуаций. Адаптивность – способность к развитию системы в соответствии с объективными изменениями модели проблемной области. 9
-
2. Классификация интеллектуальных систем
В соответствии с перечисленными признаками ИИС делятся на : системы с коммутативными способностями (с интеллектуальным интерфейсом); экспертные системы (системы для решения сложных задач); самообучающиеся системы (системы, способные к самообучению); адаптивные системы (адаптивные информационные системы). 10
-
11
-
11
-
Интеллектуальные базы данныхотличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. 13
-
Естественно-языковой интерфейспредполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. 14
-
Морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль – разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей 15
-
Семантический анализ – установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое. 16
-
Естественно-языковой интерфейс используется для: доступа к интеллектуальным базам данных; контекстного поиска документальной текстовой информации; голосового ввода команд в системах управления; машинного перевода с иностранных языков. 17
-
Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей, помимо текстовой, и цифровую информацию. 18
-
Системы контекстнойпомощи можно рассматривать как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию). 19
-
Система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров). 20
-
Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. 21
-
Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. 22
-
Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия. 23
-
Экспертные системыпредназначены для решения задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Многоагентные системы.Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе. 24
-
Для многоагентных системхарактерны следующие особенности: проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий; распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний; применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы; 25
-
обработка больших массивов данных, содержащихся в базе данных; использование различных математических моделей и внешних процедур, хранимых в базе моделей; способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем. 26
-
В основе самообучающихся системлежат методы автоматической классификации примеров ситуаций реальной практики. Характерными признаками самообучающихся систем являются: самообучающиеся системы «с учителем», когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классобразующегопризнака); самообучающиеся системы «без учителя», когда по степени близости значений признаков классификации система сама выделяет классы ситуаций. 27
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.