Презентация на тему "Экспертные системы"

Презентация: Экспертные системы
Включить эффекты
1 из 35
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
1.8
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Экспертные системы"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 35 слайдов. Средняя оценка: 1.8 балла из 5. Также представлены другие презентации по информатике для студентов. Скачивайте бесплатно.

Содержание

  • Презентация: Экспертные системы
    Слайд 1

    Экспертные системы

    Интеллектуальные информационные системы Лекция 4

  • Слайд 2
  • Слайд 3

    Назначение экспертных систем

    Решение достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.

  • Слайд 4

    Достоинство применения экспертных систем

    Возможность принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных процессов оценок

  • Слайд 5

    Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, может выполнять следующие роли:

    Консультанта для неопытных или непрофессиональных пользователей; Ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений; Партнера эксперта по вопросам, относящимся к источникам данных из смежных областей деятельности

  • Слайд 6

    Архитектура экспертной системы

    База знаний (хранилище единиц знаний) – центральный компонент системы Программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса

  • Слайд 7

    Эксперт Инженер знаний Пользователь Интеллектуальный интерфейс Механизм объяснения База знаний Механизм вывода Механизм приобретения знаний Извлечение знаний Экспертная система

  • Слайд 8

    База знаний

    - совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и возможных неопределенностей, с которыми эти действия осуществляются.

  • Слайд 9

    Методы представления знаний:

    Правила Объекты (фреймы) Комбинация правил и объектов

  • Слайд 10

    Правила

    Если То CF (Фактор определенности) В качестве факторов определенности (CF) выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100)

  • Слайд 11

    Примеры правил:

    Правило 1: Если Коэффициент рентабельности > 0.2 То Рентабельность = "удовл." CF 100 Правило 2: Если Задолженность = "нет" и Рентабельность = "удовл." То Финансовое_сост. = "удовл." CF 80 Правило 3: Если Финансовое_сост. = "удовл." и Репутация="удовл." То Надежность предприятия = "удовл." CF 90

  • Слайд 12

    Объекты

    представляют собой совокупность атрибутов, описывающих свойства и отношения с другими объектами. В отличие от записей БД каждый объект имеет уникальное имя. Часть атрибутов отражают типизированные отношения, такие как “род - вид” (super-class - sub-class), “целое - часть” и др. Вместо конкретных значений атрибутов объектов могут задаваться значения по умолчанию (указатель наследования атрибутов устанавливается в S), присущие целым классам объектов, или присоединенные процедуры (process).

  • Слайд 13

    Пример описания объектов

  • Слайд 14

    В основе использования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату.

  • Слайд 15

    Для представления знаний в форме правил это может быть прямая (Рисунок 1) или обратная (Рисунок 2) цепочка рассуждений.

  • Слайд 16

    Механизм объяснения

    В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения. Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя "Как?" и "Почему?" получено решение или запрошены те или иные данные система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически. Полезно иметь возможность и гипотетического объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае.

  • Слайд 17

    Однако не всегда пользователя может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь продолжает не понимать полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.

  • Слайд 18

    Механизм приобретения знаний

    База знаний отражает знания экспертов (специалистов) в данной проблемной области о действиях в различных ситуациях или процессах решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления ЭС должна обладать механизмом приобретения знаний.

  • Слайд 19

    Интеллектуальный редактор

    Интеллектуальный редактор позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость, в более сложных случаях извлекать знания путем специальных сценариев интервьюирования экспертов, или из вводимых примеров реальных ситуаций, как в случае индуктивного вывода, или из текстов, или из опыта работы самой интеллектуальной системы.

  • Слайд 20

    Классификация экспертных систем

    По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом: По способу формирования решения экспертные системы разделяются на два класса: Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов). Синтетические системы производят генерацию неизвестных решений (формирование объектов).

  • Слайд 21

    По способу учета временного признака

    экспертные системы делятся на два класса: Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата. Динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.

  • Слайд 22

    По видам используемых данных и знаний

    экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).

  • Слайд 23

    По числу используемых источников знаний

    экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).

  • Слайд 24

    Классы экспертных систем

  • Слайд 25

    Классифицирующие экспертные системы

    К аналитическим задачам относятся задачи распознавания различных ситуаций, когда по набору заданных признаков (факторов) выявляется сущность некоторой ситуации, в зависимости от которой выбирается определенная последовательность действий. Таким образом, в соответствии с исходными условиями среди альтернативных решений находится одно, наилучшим образом удовлетворяющее поставленной цели и ограничениям.

  • Слайд 26

    Экспертные системы, решающие задачи распознавания ситуаций, называются классифицирующими, поскольку определяют принадлежность анализируемой ситуации к некоторому классу. В качестве основного метода формирования решений используется метод логического дедуктивного вывода (от общего к частному), когда путем подстановки исходных данных в некоторую совокупность взаимосвязанных общих утверждений получается частное заключение.

  • Слайд 27

    Доопределяющие экспертные системы

    Более сложный тип аналитических задач представляют задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. В этом случае экспертная система должна доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения.

  • Слайд 28

    В качестве методов работы с неопределенностями могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика. Доопределяющие экспертные системы могут использовать для формирования решения несколько источников знаний. В этом случае могут использоваться эвристические приемы выбора единиц знаний из их конфликтного набора, например, на основе использования приоритетов важности, или получаемой степени определенности результата, или значений функций предпочтений и т.д.

  • Слайд 29

    Для аналитических задач классифицирующего и доопределяющего типов характерны следующие проблемные области:

    Интерпретация данных ‑ выбор решения из фиксированного множества альтернатив на базе введенной информации о текущей ситуации. Основное назначение ‑ определение сущности рассматриваемой ситуации, выбор гипотез, исходя их фактов. Типичным примером является экспертная система анализа финансового состояния предприятия. Диагностика ‑ выявление причин, приведших к возникновению ситуации. Требуется предварительная интерпретация ситуации с последующей проверкой дополнительных фактов, например, выявление факторов снижения эффективности производства. Коррекция ‑ диагностика, дополненная возможностью оценки и рекомендации действий по исправлению отклонений от нормального состояния рассматриваемых ситуаций.

  • Слайд 30

    Трансформирующие экспертные системы

    В отличие от аналитических статических экспертных систем синтезирующие динамические экспертные системы предполагают повторяющееся преобразование знаний в процессе решения задач, что связано с характером результата, который нельзя заранее предопределить, а также с динамичностью самой проблемной области.

  • Слайд 31

    В качестве методов решения задач в трансформирующих экспертных системах используются разновидности гипотетического вывода:

    генерации и тестирования, когда по исходным данным осуществляется генерация гипотез, а затем проверка сформулированных гипотез на подтверждение поступающими фактами; предположений и умолчаний, когда по неполным данным подбираются знания об аналогичных классах объектов, которые в дальнейшем динамически адаптируются к конкретной ситуации в зависимости от ее развития; использование общих закономерностей (метауправления) в случае неизвестных ситуаций, позволяющих генерировать недостающее знание.

  • Слайд 32

    Многоагентные системы

    Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе, например, через "доску объявлений" (Рисунок 13“Доска объявлений”).

  • Слайд 33

    Рисунок «Доска объявлений»

  • Слайд 34

    Для многоагентных систем характерны следующие особенности:

    Проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий; Распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний; Применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы; Обработка больших массивов данных, содержащихся в базе данных; Использование различных математических моделей и внешних процедур, хранимых в базе моделей; Способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем

  • Слайд 35

    Для синтезирующих динамических экспертных систем наиболее применимы следующие проблемные области:

    Проектирование ‑ определение конфигурации объектов с точки зрения достижения заданных критериев эффективности и ограничений, например, проектирование бюджета предприятия или портфеля инвестиций. Прогнозирование ‑ предсказание последствий развития текущих ситуаций на основе математического и эвристического моделирования, например, прогнозирование трендов на биржевых торгах. Диспетчирование ‑ распределение работ во времени, составление расписаний, например, планирование графика освоения капиталовложений. Планирование ‑ выбор последовательности действий пользователей по достижению поставленной цели, например, планирование процессов поставки продукции. Мониторинг ‑ слежение за текущей ситуацией с возможной последующей коррекцией. Для этого выполняется диагностика, прогнозирование, а в случае необходимости планирование и коррекция действий пользователей, например, мониторинг сбыта готовой продукции. Управление ‑ мониторинг, дополненный реализацией действий в автоматических системах, например, принятие решений на биржевых торгах.

Посмотреть все слайды

Сообщить об ошибке