Содержание
-
Тема урока: «Аксиомы стереометрии и их следствия. Решение задач»
-
Цель урока:обобщение и применение аксиом и их следствий к решению задач
-
Математический диктант
1). Сформулируйте аксиомы стереометрии: Аксиома 1. через любые три точки, не лежащие на одной прямой, проходит плоскость и притом только одна _____________________________________________ Аксиома 2. если две точки прямой лежат в плоскости, то и все точки этой прямой лежат в этой плоскости __________________________________________________________ _ Аксиома 3. если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все_общие точки этих плоскостей
-
2). Заполните пропуски, чтобы получилось верное утверждение: а). Для любой прямой существуют точки, принадлежащие ей, и ______________ ____________________________________________________________________ б). Через прямую и не лежащую на ней точку проходит плоскость, и притом ____________________________________________________________________ в). Через две пересекающиеся прямые проходит плоскость, и притом _________ _____________________________________________ г). Если А а, а , то А … . д). Если А , В , С АВ, то С … .
-
АВСД – ромб, О – точка пересечения его диагоналей, М – точка пространства, не лежащая в плоскости ромба. Точки А, Д, О лежат в плоскости α.
Определить и обосновать: 1. Какие еще точки лежат в плоскости α? Лежат ли в плоскости α точки В и М? Лежит ли в плоскости МОД точка В? Назовите линию пересечения плоскостей МОС и АДО. Точка О – общая точка плоскостей МОВ и МОС. Верно ли что эти плоскости пересекаются по прямой МО? Назовите три прямые, лежащие в одной плоскости; не лежащие в одной плоскости. А В С Д М О Задача (устно)
-
Задача 1.Сколько плоскостей можно провести через выделенные элементы куба? Заштрихуйте соответствующие плоскостям грани куба.
● ● ●
-
Проверь себя!
-
Задача №2
Две смежные вершины и точка пересечения диагоналей параллелограмма лежат в одной плоскости. Лежат ли две другие вершины параллелограмма в этой плоскости? Ответ объясните.
-
Задания разного уровня сложности
Уровень 1: Точка С – общая точка плоскости альфа и бета. Прямая с проходит через точку С. Верно ли, что плоскости альфа и бета пересекаются по прямой с. Ответ объясните. Уровень 2: Прямые а, в и с имеют общую точку. Верно ли, что данные прямые лежат в одной плоскости? Ответ объясните Уровень 3: Четыре прямые попарно пересекаются. Верно ли, что если любые три из них лежат в одной плоскости, то все четыре прямые лежат в одной плоскости? Ответ объясните
-
Синквейн
Аксиома
-
Домашнее задание
Пункты 1 – 3 Задачи : на карточках
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.