Презентация на тему "Декартова система координат"

Презентация: Декартова система координат
Включить эффекты
1 из 29
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Декартова система координат" по математике. Состоит из 29 слайдов. Размер файла 0.29 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    29
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Декартова система координат
    Слайд 1

    Декартова система координат в пространстве и на плоскости. Полярная система координат на плоскости.Прямая на плоскости.Кривые второго порядка

    pptcloud.ru

  • Слайд 2

    Опр.: Упорядоченные координатные оси, не лежащие в одной плоскости и имеющую одну общую точку, называются косоугольной системой координат в пространстве. Если координатные оси взаимно перпендикулярны, то косоугольную систему координат называют прямоугольной системой координат Декарта в пространстве и обозначают хуz. Опр.: Множество упорядоченных троек чисел в избранной системе координат называется трехмерным пространством.

  • Слайд 3

    z z1 P(х1; у1; z1) у1 у х1 х Элементы системы координат: координатные плоскости Оху, Оуz, Охz; оси координат: Ох – ось абсцисс, Оу – ось ординат; Оz – ось аппликат. Точка О – начало координат; упорядоченная тройка чисел (х; у; z) – координаты произвольной точки Р. у у1Р(х1; у1) 0 х1х Частным случаем является система координат на плоскости, например координатная плоскость Оху.

  • Слайд 4

    у Р (х1; у1) r φ 0Ах Точка на плоскости может быть задана полярной системой координат, при этом положение точки Р описывается углом поворота положительной полуоси Ох против часовой стрелки до положения луча ОР и расстоянием точки Р от начала координат. Из Δ АРО, где , имеем:

  • Слайд 5

    Примеры

    1) Задать точку плоскости А (-1; 1) в полярных координатах. Решение. r= Таким образом А 2) Задать точку плоскости В (0,5; π/4) в декартовых координатах. Решение. х1=0,5cosπ/6 =0,5 у1=0,5sin π/6= 0,5·1/2 . Таким образом В (0,25 ; 0,25)

  • Слайд 6

    Прямые на плоскости

    Прямая на координатной плоскости может быть получена в результате пересечения произвольной плоскости Ах + Ву + Сz + D = 0 и координатной плоскости. Составим уравнение прямой, принадлежащей, например, плоскости хОу. Эта прямая определяется системой двух уравнений:

  • Слайд 7

    Таким образом Ах + Ву + С = 0 (*) – общее уравнение прямой на координатной плоскости, причем (А; В) является нормальным вектором этой прямой. n L Опр.: геометрическое место точек, удовлетворяющее уравнению (*), называется прямой. у b - уравнение прямой в отрезках на осях а 0 L у L - уравнение прямой, М1(х1;у1) М2(х2;у2)проходящейчерез две точки

  • Слайд 8

    у L b φ 0 х L: у= kх+b, где k= tgφ – уравнение прямой с угловым коэффициентом; L: у – у1= k (х – х1) – уравнение прямой с угловым коэффициентом, проходящей через т. М (х1; у1).

  • Слайд 9

    Угол между прямыми

    Пусть прямые заданы уравнением А1х + В1у + С1 =0 и А2х + В2у + С2 =0 Угол между этими прямыми найдем из формулы: Если прямые заданы уравнением с угловыми коэффициентами, то угол между ними находим по формуле:

  • Слайд 10

    yL2 L1 0 х Условия параллельностии перпендикулярности двух прямых: L1||L2, если или k1=k2 L1 L2, если А1А2=-В1В2 или k1k2= -1 φ

  • Слайд 11

    Примеры

    1. Определить острый угол между прямыми у = 3х + 1 и у = -2х – 5. Решение. Полагая k1= 3 и k2= -2 и применяя формулу (1), получим tg  = -2–3/1+(-2)3= -5/-5= 1, т.е. = /4= 0,785 рад. 2. Показать, что прямые 7х + 3у – 5 = 0 и 14х + 6у + 1 = 0 параллельны. Решение. Приведя уравнение каждой прямой к виду с угловым коэффициентом, получаем: у= -7/3х+5/3 и у= -7/3х+1/14. Угловые коэффициенты этих прямых равны: k1= k2= -7/3, т. е. прямые параллеьны. 3. Даны вершины треугольника А (-5; 0), В (-3; -2) и С (-7; 6). Найти уравнения высот треугольника AD, BNи CM. Решение. По формуле (4) найдем угловой коэффициент стороны ВС: kВС= 6+2/-7–(-3)= 8/-4= -2. В силу перпендикулярности прямых AD и BCkAD= -1/kВС, т. е. kAD= ½. Уравнение высоты, проведенной из вершины А будет иметь вид: у–0= ½(х+5) или х–2у+5= 0.

  • Слайд 12

    Линии второго порядка на плоскости

  • Слайд 13

    Линии второго порядка на плоскости.

    Общее уравнение линии второго порядка на плоскости: а11х2 + а22у2 + 2а12ху + а10х + а20у + а00 = 0, где а211+ а212 + а222≠ 0, т. е. хотя бы одно из чисел а11,а12,а22 не равно нулю. Окружностью называется геометрическое место точек плоскости, равноудаленных от данной точки (центра).

  • Слайд 14

    Каноническое уравнение окружности с центром в точке М(х0;у0) и радиусом R. Уравнение окружности с центром в начале координат Эллипсом называется геометрическое место точек, сумма расстояний каждой из которых до двух заданных точек этой же плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

  • Слайд 15

    - фокальное расстояние, тогда фокусы будут иметь следующие координаты: и r1 + r2 = 2а (const); a>c.

  • Слайд 16

    Выразим r1 = , r2 = , тогда аналитическое уравнение эллипса примет вид: Обозначив , получим каноническое уравнение эллипса:

  • Слайд 17

    Свойства эллипса

    Эллипс – ограниченная кривая второго порядка. Эллипс имеет вертикальную и горизонтальную оси симметрии, а так же центр симметрии. А1 А2 - большая ось (ОА1 - полуось), В1 В2 – малая ось (ОВ1 - полуось). А1, А2, В1, В2 - вершины эллипса, причем - называется эксцентриситетом эллипса, ,т.е. 0

  • Слайд 18

    5. Прямые называются директрисами (направляющими) т.о. имеем: , где d1= Пример: Дан эллипс найти полуоси, эксцентриситет, уравнения директрис.

  • Слайд 19

    Гипербола

    Определение:Гиперболой называется множество точек плоскости, модуль разности расстояний каждой из которых до двух данных точек, называемых фокусами, есть величина постоянная.

  • Слайд 20

    тогда фокусы будут иметь координаты F1(-c;0) и F2(c;0).

  • Слайд 21

    Выразим r1 = , r2 = , тогда аналитическое уравнение гиперболы примет вид: Обозначив , получим каноническое уравнение гиперболы:

  • Слайд 22
  • Слайд 23

    Свойства гиперболы

    Гипербола – неограниченная кривая второго порядка. Гипербола обладает центральной симметрией. А1, А2 – действительные вершины гиперболы; ось 2а – действительная, 2b – мнимая. Прямоугольник со сторонами 2а и 2b называется основным прямоугольником гиперболы. Гипербола имеет две асимптоты: Эксцентриситет гиперболы: причем Прямые - называется директрисами гиперболы причем

  • Слайд 24

    Примеры: Дана гипербола 16х2 – 9у2 = 144, найти: полуоси а и b; фокусы; эксцентриситет; уравнения асимптот; уравнения директрис. 16х2 – 9у2 = 144 1. 2. 3. 4. 5.

  • Слайд 25

    Парабола

    Определение:параболой называется множество точек плоскости, равноудаленных от фиксированной точки плоскости(фокус F) и фиксированной прямой (директриса d).

  • Слайд 26

    d –директриса параболы.

  • Слайд 27

    Выразим тогда аналитическое уравнение параболыпримет вид: таким образом получим каноническое уравнение параболы:

  • Слайд 28

    Свойства параболы

    Парабола – неограниченная кривая второго порядка, расположенная в правой или верхней полуплоскости . Парабола имеет одну ось симметрии – ось абсцисс или ось ординат.

  • Слайд 29

    Пример: Установить, что уравнение у2 = 4х – 8 определяет параболу, и найти координаты ее вершины А, величину параметра р и уравнение директрисы. у2 = 4х – 8 Представим уравнение в каноническом виде: у2 = 4(х - 2) вершина параболы смещена вдоль оси ОХ вправо на две единицы. А(2;0) – координаты вершины параболы. 2р = 4 р = 2 – параметр параболы. 3. - уравнение директрисы параболы.

Посмотреть все слайды

Сообщить об ошибке