Содержание
-
«Интересные и быстрые способы и приемы вычислений»
Автор: Кузьмина Ирина (8 класс, МОУ «Мисцевская ООШ №2»)
-
«Счёт и вычисления – основа порядка в голове». Песталоцци.
-
Признаки делимости.
Эти признаки нам хорошо знакомы. Признак делимости на 2; Признак делимости на 3 и на 9; Признак делимости на 5; Признак делимости на 10,100 и 1000.
-
Существуют признаки делимости и на другие числа, например… Признак делимости на 4; Признак делимости на 8; Признак делимости на 6; Признак делимости на 25; Признак делимости на 11; Признак делимости на 7; Признак делимости на 19.
-
Признак делимости на 4. Число делится на 4, если две последние его цифры нули или образуют число, делящееся на 4. В остальных случаях число на 4 не делится.
-
Например: 31700 делится на 4, так как оканчивается двумя нулями; 215634 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 16628 делится на 4, так как две последние цифры дают число 28, делящееся на 4.
-
Признак делимости на 8. Число делится на 8, если три последних цифры его нули или образуют число, делящееся на 8. В остальных случаях - не делится.
-
Например: 120000 делится на 8 (три нуля в конце); 170004 не делится на 8 (три последние цифры дают число 4, не делящееся на 8); 111120 делится на 8 (три последние цифры дают число 120, делящееся на 8).
-
Признак делимости на 8. На 8 делятся только четные натуральные числа, у которых делится на число 8, образованное двумя последними цифрами, если цифра сотен четная или равна 0.Если цифра не четная, то на восемь должно делиться число, образованное двумя последними цифрами, плюс (минус) четыре.
-
Например: 31656 делится на 8, т.к. 56 делится на 8, цифра сотен 6 четная; 97552 делится на 8, т.к. 52+4=56, а 56 делится на 8, цифра сотен 5 нечетная; 7016 делится на 8, т.к. 16 делится на 8, цифра сотен 0; 3844 не делится на 8, т.к. 44 не делится на 8, цифра сотен 8 четная; 2524 не делится на 8, т.к. 28=24+4 не делится на 8, цифра сотен 5 нечетная; 4398 не делится на 8, т.к. 98-4=94 не делится на 8, цифра сотен 3 нечетная.
-
Признак делимости на 6. Число делится на 6, если оно делится одновременно на 2 и на 3. В противном случае - не делится.
-
Например: 126 делится на 6, так как оно делится и на 2, и на 3.
-
Признак делимости на 25. На 25 делятся числа, две последние цифры которых нули или образуют число, делящееся на 25 (т.е. числа, оканчивающиеся на 00, 25, 50 или 75). Другие не делятся.
-
Например: 7150 делится на 25 (оканчивается на 50). 4855 не делится на 25 (оканчивается на 55).
-
Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, занимающих нечетные места, либо равна сумме цифр, занимающих четные места, либо отличается от неё на число, делящееся на 11.
-
Например: Число 103785 делится на 11, так как сумма цифр, занимающих нечетные места, 1+3+8=12 равна сумме цифр, занимающих четные места 0+7+5=12. Число 9163627 делится на 11, так как сумма цифр, занимающих нечетные места, есть 9+6+6+7=28,а сумма цифр, занимающих четные места, есть 1+3+2=6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461025 не делится на 11, так как числа 4+1+2=7 и 6+0+5=11 не равны друг другу, а их разность 11-7=4 на 11 не делится.
-
Признак делимости на 7. Зачеркни цифру единиц, удвой её и отними от оставшегося числа. Если эта разность делится на 7, то и первоначальное число делится на 7.
-
Признак делимости на 19. Зачеркни последнюю цифру, удвой её, прибавь к оставшемуся числу, проверяй да или нет.
-
Некоторые способы быстрых вычислений.
Сложение натуральных чисел, путем увеличения одного слагаемого за счет уменьшения другого. Вычитание натуральных чисел, путем увеличения уменьшаемого и вычитаемого на несколько единиц. Свойство( а + в )+( а - в)=2а Свойство (а + в) - (а - в)= 2в. Сложение многозначных чисел столбцами. Умножение с применением распределительного закона. Умножение методом Ферроля. Умножение чисел, у которых число десятков одинаково, а сумма единиц равна 10. Умножение двузначного (трехзначного, четырехзначного) числа на 11. Умножение на числа вида aa. Умножение двузначного числа на 111. Умножение однозначного или двузначного числа на 37. Умножение на 5, 25, 125. Деление на 5, 25, 125. Умножение на 9, 99, 999. Возведение в квадрат двузначных чисел, имеющих 5 десятков. И ДРУГИЕ…
-
Умножение методом Ферроля. Для умножения единиц произведения переумножения перемножают единицы множителей, для получения десятков, умножают десятки одного на единицы другого и наоборот и результаты складывают, для получения сотен перемножают десятки.
-
Например: 37х78=1776 а)7х8=56, пишем 6, помним 5 б)3х8+7х4+5=24+28+5=57, пишем 7, помним 5, в)3х4+5=17, пишем 17. Методом Ферроля легко перемножать устно двухзначные числа от 10 до 20.
-
Умножение чисел, у которых число десятков одинаково, а сумма единиц равна 10. При умножении таких чисел необходимо число десятков любого множителя умножить на число, которое больше на 1, затем перемножить отдельно единицы этих чисел и, наконец, к первому результату справа приписать второй.
-
Например: 13х17=221 а)1х(1+1)=2, пишем 2 б)3х7=21 приписываем справа 21 204х206=42024 а)20х(20+1)=420, пишем 420 б)6х4=24, приписываем справа 24.
-
Подводя итоги…
Уверена, что мною рассмотрена небольшая часть известных в мире математики методов и приемов вычислений, которые можно назвать не только интересными, но и красивыми… Впереди у меня интереснейшее путешествие по стране знаний.
-
И в заключение…
«Кто с детских лет занимается математикой, тот развивает внимание, тренирует мозг, свою волю, воспитывает настойчивость и упорство в достижении цели». А. Маркушевич
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.