Презентация на тему "История возникновения дробей"

Презентация: История возникновения дробей
Включить эффекты
1 из 20
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.97 Мб). Тема: "История возникновения дробей". Предмет: математика. 20 слайдов. Добавлена в 2017 году. Средняя оценка: 5.0 балла из 5.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    20
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: История возникновения дробей
    Слайд 1

    История возникновения дробей

    3⅞ ⅘ 9,67 0,001

  • Слайд 2

    Введение

    В 5 классе на уроках математики мы познакомились с новыми числами – с дробями. Мне стало интересно узнать: Откуда произошли такие числа? Почему дроби записывают таким образом? Кто придумал их записи? Есть ли их дальнейшее развитие? Чтобы найти ответы на все эти вопросы, я обратилась к книгам, и к более современному помощнику по имени «Интернет». В них я нашла много интересного материала, с самыми интересными, на мой взгляд, данными я хочу поделиться.

  • Слайд 3

    На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней ступени развития человечества. Так, по-видимому, дележ десятка плодов между большим числом участников охоты заставлял людей обращаться к дробям. Первой дробью былаполовина.Для того, чтобы из одного получить половину, надо разделить единицу, или «разломить» ее на два. От сюда и пошло название ломаные числа. Теперь их называют дробями. Различают три вида дробей: Единичные (аликвоты) или доли(например, 1/2, 1/3, 1/4, и т.д.). Систематические, т.е дроби, у которых знаменатель выражается степенью числа (например, степенью числа 10 или 60 и т.д.). Общего вида, у которых числителем и знаменателем может быть любое число. Существуют дроби «ложные» – неправильныеи «реальные» –правильные.

  • Слайд 4

    Запись дробей в Египте

    Египтяне все дроби старались записать как суммы долей, то есть дробей вида 1/n. Например, вместо 8/15 они писали 1/3 + 1/5. Единственным исключением была дробь 2/3. В папирусе Ахмеса есть задача: "Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придется провести 49 разрезов.  А по-египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: 1/2 + 1/4 + 1/8. Значит, каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезаем пополам, два хлеба - на 4 части и один хлеб - на 8 долей, после чего каждому даем его часть.   1/5 1/23 1/141

  • Слайд 5

    Складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде сумм долей. С помощью этой таблицы выполняли и деление чисел. Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Еще сложнее обстояло дело с делением.

  • Слайд 6

    Вавилон

    Совсем иным путем пошли вавилоняне. Они работали только с шестидесятеричными дробями. Так как знаменателями таких дробей служат числа 60, 602, 603 и т. д., то такие дроби, как 1/7, 1/11,1/13 нельзя было точно выразить через шестидесятеричные: выражали через них приближенно. Мы и сейчас пользуемся такими дробями в обозначениях времени и величин углов. Например, время 3ч.17мин.28с. можно записать и так: 3,17'28" ч.(читается 3 целых, 17 шестидесятых 28 три тысячи шестисотых часа). Вместо слов «шестидесятые доли», «три тысячи шестисотые доли» говорили короче: «первые малые доли», «вторые малые доли». От этого и произошли слова минута (по латыни – меньшая) и секунда (от латыни – вторая). Вавилонский способ обозначения дробей сохранил свое значение и до сих пор. Так как система счисления у вавилонян была позиционной, они действовали с шестидесятеричными дробями с помощью тех же таблиц, что и для натуральных чисел.

  • Слайд 7

    Древний Рим

    Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называласьасс. Двенадцатую долю асса называли унцией.А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь не шла о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.

  • Слайд 8

    Римская система дробей и мер была двенадцатеричной. Даже сейчас иногда говорят: "Он скрупулезно изучил этот вопрос". Это значит, что вопрос изучен до конца, что ни одной самой малой неясности не осталось. А происходит странное слово "скрупулезно" от римского названия 1/288 асса - "скрупулус". В ходу были и такие названия: "семис" - половина асса, "секстане" - шестая его доля, "семиунция" - полунции, то есть 1/24 асса, и т. д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было для этих дробей помнить и таблицу сложения, и таблицу умножения. Поэтому римские купцы твердо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию (3/2 унции, то есть 1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из них дошли до нас.

  • Слайд 9

    Греция

    Учение об отношениях, о дробях и связывалось у греков с музыкой. Кроме арифметики и геометрии, в греческую математику входила музыка. Музыкой греки называли ту часть арифметики, в которой говорится об отношениях и пропорциях. Греки создали и научную теорию музыки. Они знали: чем длиннее натянутая струна, тем «ниже» получается звук, который она издает; что короткая струна издает высокий звук. Однако у музыкального инструмента не одна, а несколько струн, и для того, чтобы все струны при игре звучали «согласно», приятно для уха, длина звучащих частей их должна быть в определенном отношении. Например, чтобы высоты звуков, издаваемых двумя струнами, различались на октаву, нужно, чтобы их длины относились как 1:2. Подобным же образом квинте соответствует отношение 2:3, кварте – отношение 3:4 и т.д.

  • Слайд 10

    Русь

    На Руси дроби называли долями, позднее «ломанными числами» Например, - эти дроби назывались родовые или основными. Половина, полтина – Четь – Десятина – Полчеть – Полполчеть – Пятина – Треть – Полполтреть – Полтреть – Осьмушка -

  • Слайд 11

    Из истории обозначения дробей

    Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель – снизу и не писали дробной черты. Записывать дроби в точности, как сейчас, стали арабы. В Древнем Китае пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

  • Слайд 12

    В XV веке, в Узбекистане математик и астроном ДжемшидГиясэддин ал –Каши записал дробь в одну строчку числами в десятичной системе и дал правила действия с ними. Он пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов. В 1585г. С.Стивенс стал писать цифры дробного числа в одну строчку с цифрами целого числа, при этом нумеруя их. Например: 12,761записывалось так: 12076112. Именно Стивнса считают изобретателем десятичных дробей. Запятая в записи дробей впервые встречается в 1592г., а в 1617г. Шотландский математик Дж.Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой. Современную запись, т.е. отделение целой части от запятой, предложил Кеплер. В странах, говорящих на английском языке (Англия, Канада и т.д.), и сейчас вместо запятой пишут, точку. Например: 2.3 и читают: два точка три.

  • Слайд 13

    Старинные задачи с дробями

    Впроизведении знаменитого римского поэта I века до н. э. Горация так описана беседа учителях учеником в одной из римских школ этой эпохи: Учитель. Пусть скажет сын Альбина, сколько останется, если от пяти унций отнять одну унцию? Ученик. Одна треть. Учитель. Правильно. Ты сумеешь беречь свое имущество. Решение: 4 унции 4 унции 4 унции Ответ: 1/3

  • Слайд 14

    Задача из "Арифметики" известного среднеазиатского математика Мухаммеда ибн-Мусыал-Хорезми (IX век н. э.)

    "Найти число, зная, что если отнять от него одну треть и одну четверть, то получится 10". четверть треть число 10   Решение: Ответ: 24

  • Слайд 15

    Задача из "Папируса Ахмеса" (Египет, 1850 г. до н. э.)

    "Приходит пастух с 70 быками. Его спрашивают: - Сколько приводишь ты своего многочисленного стада? Пастух отвечает: - Я привожу две трети от трети скота. Сочти!" ? 70 быков Решение: 1) 70:2·3=105 голов - это 1/3 от скота 2) 105·3=315 голов скота Ответ: 315 голов скота

  • Слайд 16

    Староиндийская задача математика Сриддхары (XI век н.э.)

    Есть кадамба цветок, На один лепесток Пчелок пятая часть опустилась. Рядом тут же росла Вся в цвету сименгда, И на ней третья часть поместилась. Разность их ты найди, Ее трижды сложи И тех пчел на кутай посади, Только две не нашли Себе место нигде, Все летали то взад, то вперед и везде Ароматом цветов наслаждались. Назови теперь мне, Подсчитавши в уме, Сколько пчелок всего здесь собралось?

  • Слайд 17

    Решение:

    пятая часть третья часть кадамбасименга кутай Ответ: 30 пчел

  • Слайд 18

    Задача армянского ученого АнанияШиракаци (VII век н.э.)

    "Один купец прошел через 3 города, и взыскивали с него в первом городепошлины половину, и треть имущества, и во втором городе половину и треть (с того, что осталось), и в третьем городе половину и треть (с того, что осталось). Когда он прибыл домой, у него осталось 11 денежков (денежных единиц). Итак, узнай, сколько всего денежков было вначале у купца?" Ответ:2376денежков

  • Слайд 19

    СПАСИБО ЗА ВНИМАНИЕ!

  • Слайд 20

    Литература

    Виленкин Н.Я. Из истории дробей. /Квант, №5, 1987. Математика 4 класс. Часть1./Л.Г.Петерсон. – М., Ювента, 2004. Фридман Л.М. Изучаем математику. – М., 2001.

Посмотреть все слайды

Сообщить об ошибке