Презентация на тему "Математика и другие науки"

Презентация: Математика и другие науки
1 из 24
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Математика и другие науки" в режиме онлайн. Содержит 24 слайда. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    24
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Математика и другие науки
    Слайд 1

    Математика и другие науки

    Учитель математики ГБОУ СОШ №1413 г. Москвы Шумилова Юлия Евгеньевна

  • Слайд 2

    Математика является одним из самых интереснейших школьных предметов. Она изучает науку о структурах, порядке и отношениях, измерения и описания форм реальных объектов. Математика -это фундаментальная наука, предоставляющая (общие) языковые средства другим наукам.

  • Слайд 3

    Зачастую мы всегда считали , что математика относится к техническим наукам , но это только на поверхностном уровне, если мы углубимся в изучения, мы поймём , что она связана как с естественными, так и с гуманитарными науками.

  • Слайд 4

    Математика в Музыке "Раздумывая об искусстве и науке, об их взаимных связях и противоречиях, я пришел к выводу, что математика и музыка находятся на крайних полюсах человеческого духа, что этими двумя антиподами ограничивается и определяется вся творческая духовная деятельность человека и, что между ними размещается все, что человечество создало в области науки и искусства" Г. Нейгауз

  • Слайд 5

    Открытие Пифагорав области теории музыки в том ,что сочетание звуков, издаваемых струнами, наиболее благозвучно, если длины струн музыкального инструмента находятся в правильном численном отношении друг к другу.

  • Слайд 6

    Для воплощения своего открытия Пифагор использовал монохорд – полу инструмент, полу прибор. Было проделано много опытов, в результате которых Пифагор описал математически звучание натянутой струны

  • Слайд 7

    Долгое время не было единого мнения о том, что определяет приятное для слуха звучание струны. Ясность в этот вопрос внес Архитас (IV в. до н.э.), который сущность высоты тона видел не в длине струны и не в силе натяжения, а в скорости ее движения.Сегодня эта "скорость движения" носит название частоты колебания струны.

  • Слайд 8

    «Нельзя быть настоящим математиком, не будучи немного поэтом» Т. Вейерштрасс Математика в Литературе

  • Слайд 9

    Многое в структуре произведений поэзии роднит этот вид искусства с музыкой. Каждый стих обладает своей музыкальной формой – своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных композиций, закономерности музыкальной гармонии, а следовательно, и золотая пропорция, и числа Фибоначчи.

  • Слайд 10

    Числа Фибоначчи — элементы числовой последовательности  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,… . Суть последовательности Фибоначчи, в том, что начиная с 0 или 1, следующее число получается сложением двух предыдущих. Если какой-либо член этой последовательности разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1,618033988975… и через раз то превосходящая, то настигающая его.

  • Слайд 11

    Во многих произведениях Пушкина присутствует соответствие числам Фибоначчи. Для анализа метрики стихотворений А.С. Пушкина рассмотрены произведения 1829-1836 годов, периода создания наиболее совершенных стихов. Сюда вошло 96 произведений. Число строк в стихотворениях этого периода изменялось от 4 до 153 . Однако большие стихотворные формы встречаются редко; число стихотворений с числом строк более 60 составило всего 9 штук. 

  • Слайд 12

    \ Размеры стихов распределены совсем не равномерно; выделяются предпочтительные и редко встречаемые размеры. На графике распределения стихотворений А.С. Пушкина по числу строк в них отчетливо выделяется несколько максимумов – наиболее часто встречающихсяразмеров. Они явно тяготеют к числам 5, 8,13, 21, 34.

  • Слайд 13

    После приведенного анализа  стихотворений А.С. Пушкина уже не кажется случайностью тот факт, что его роман в стихах «Евгений Онегин» состоит из 8 глав, в каждой главе в  среднем 50 стихов (а в 7-й главе 55), а каждый стих состоит из 14 строчек. Основная схема построения “Евгения Онегина” основана на близости к трём числам Фибоначчи: 8, 13, 55.Тяготение к определенным стихотворным формам характерно для каждого поэта, оно и определяет его индивидуальность. Для А.С. Пушкина характерно большое разнообразие таких форм, но есть у него и наиболее излюбленные.  По-видимому, сюда относится и неосознанное, интуитивное тяготение к числам Фибоначчи. Ведь интуиция в творчестве  А.С. Пушкина во многом  определила гениальность его произведений.

  • Слайд 14

    Многими исследованиями было замечено, что стихотворения подобны музыкальным произведениям; в них так же существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения.Отрезок прямой АВ можно разделить на две части следующими способами: на две равные части – АВ : АС = АВ : ВС; на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ : АС = АС : ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

  • Слайд 15

    Золотое сечение Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей. a : b = b : c или с : b = b : а. Части «золотого сечения» составляют приблизительно 62% и 38% всего отрезка. Свойства «золотого сечения» описываются уравнением: 

  • Слайд 16

    Золотое сечение математики рассмотрим на примере композиции “Пиковой дамы” Пушкина. В повести 853 строчки. Кульминацией является сцена в спальне графини, куда проник Герман в надежде узнать тайну 3-х карт. Смерть графини от испуга случается на 535 строке. Эта строка располагается точно в месте золотого сечения. Всего: 853 строки, 535 строка – кульминация,  853 : 535 = 1,6 – золотое сечение. 

  • Слайд 17

    «Мы с наслаждением познаём математику… Она восхищает нас, как цветок лотоса»  Аристотель Математика в Биологии

  • Слайд 18

      В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. Можно отметить два вида проявлений золотого сечения в живой природе: иррациональные отношения по Пифагору - 1.62 и целочисленные, дискретные - по Фибоначчи.

  • Слайд 19

    Для всего животного мира характерны симметрия форм и наличие парных органов, членение на три части тела (голова, грудь, брюшко), членение конечностей на 3 и 5 частей, а брюшка - на 3. Это является характерной чертой морфологии насекомых. Строение форм представителейболее высокогоуровня животного мира также подчиняется закону чисел Фибоначчи. Так у черепахи в панцире имеется 13 сросшихся роговых пластин, из них 5 пластин в центре, а 8 по краям, на лапках 5 пальцев, а позвоночник содержит 34 позвонка

  • Слайд 20

    Математика в Информатике «Математика нужна для изучения многих наук, но сама она не нуждается ни в какой науке» П. Каптерев

  • Слайд 21

    Информатика использует методы математики для построения и изучения моделей обработки, передачи и использования информации. Можно утверждать, что математика создает тот теоретический фундамент, на котором строится все знание информатики.

  • Слайд 22

    Особое значение в информатике играет такой раздел математики, как математическая логика. Математическая логика разрабатывают методы, позволяющие использовать достижения логики для анализа различных процессов, в том числе и информационных, с помощью компьютеров. Теория алгоритмов, теория параллельных вычислений, теория сетей и др. науки берут свое начало в математической логике и активно используются в информатике. Используя логические операции, можно провести моделирование логической структуры правовой нормы.

  • Слайд 23

    В результате всех наблюдений, мы можем утверждать, что математика – это не только стройная система законов, теорем, задач, но и уникальное средство познания красоты. А красота многогранна и многолика. Она выражает высшую целесообразность устройства мира, подтверждает универсальность математических закономерностей. Красота помогает с радостью воспринимать окружающий мир, математика даёт возможность осознать явления и упрочить знания о гармонии всего мира. Изучая математику, мы открываем всё новые и новые слагаемые красоты, приближаясь к пониманию, а затем и к созданию красоты и гармонии.

  • Слайд 24

    www.wikipedia.ru www.academic.ru www.slovari.ru Для создания презентации были использованы:

Посмотреть все слайды

Сообщить об ошибке