Презентация на тему "Периодическая дробь мне улыбнулась"

Презентация: Периодическая дробь мне улыбнулась
1 из 20
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Периодическая дробь мне улыбнулась" в режиме онлайн. Содержит 20 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    20
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Периодическая дробь мне улыбнулась
    Слайд 1

    Елфимова МарияМОУ «Темповская средняя общеобразовательная школа Ртищевского района, Саратовской области»

    Научный руководитель: Хачатурянц З.С. 2009г.

  • Слайд 2

    Периодическая дробь мне улыбнулась

  • Слайд 3

    Среди чисел существует такое согласие и совершенство, что нам надо размышлять дни и ночи над их удивительной закономерностью. С. Стевин.

  • Слайд 4

    У профессора философии А.Ф.Лосева есть такие воспоминания о детстве: «Когда я узнал, что сумма углов треугольника равняется двум прямым, я почувствовал в этом нечто свое, личное, бесконечно родное, чего у меня уже никто не отнимет. И среди многочисленных волнений жизни и мысли я нашел в этом приют».

  • Слайд 5

    Мне так понятны эти слова. Я очень люблю математику и нахожу в ней отзвук своих стремлений. А эти бесконечные, безумные искания, эти порывы к истине… Как-будто все рассказанное учителем понятно, но тем не менее хочется чего-то еще, хочется самостоятельно раскрыть скрытую для МЕНЯ ТАЙНУ. Возникают разного рода вопросы, и вопросы эти бесконечны. Как бесконечна и сама математика…

  • Слайд 6

    А началось все с обычной задачи, после прохождения темы: «Сумма бесконечной геометрической прогрессии» где. Нам было предложено решить задачу №425. Представить в виде обыкновенной дроби число А) 0,(6) ; Б)0,(1) В принципе, решение этих задач никаких сложностей не представляло. 0,(6)=0,6+0,06+0,006+… Слагаемые в правой части-члены бесконечной геометрической прогрессии, где q=0,1; используя формулу , я рассчитала, что Следовательно, Аналогично,

  • Слайд 7

    По той же формуле я решила задачу №426. При решении задач №425, 426, я забыла сократить дроби. Но именно благодаря моей небрежности и состоялась эта работа.

  • Слайд 8

    Гипотеза №1

    Решив задачи №425, 426, я выдвинула гипотезу №1: чтобы представить чистую периодическую дробь в виде обыкновенной, надо в числитель обыкновенной записать период, а в знаменатель написать столько девяток, сколько цифр в периоде бесконечной десятичной дроби.

  • Слайд 9

    И начался эксперимент…(Фотографии взяты из личного архива)

  • Слайд 10
  • Слайд 11
  • Слайд 12

    А разве это делится?

  • Слайд 13

    В работу включился общий любимец Гарфилд. Ура!!! Гипотеза подтвердилась!

  • Слайд 14

    Докажем, что если в периоде бесконечной десятичной периодической дроби «n» цифр, то имеем: Доказательство: Что и требовалось доказать

  • Слайд 15

    Поставим перед собой эту же задачу, для случая, когда бесконечная десятичная периодическая дробь - смешанная

  • Слайд 16

    Я рассмотрела много примеров, но никакую гипотезу не смогла выдвинуть. Видно фортуна мне улыбнулась лишь один раз.

    А что если «преобразовать» смешанную периодическую дробь так, чтобы она стала чистой, а для чистой периодической дроби правило выведено. Для этого я рассмотрела задачу №425(Д)

  • Слайд 17

    Представить в виде обыкновенной дроби число 0,2(3)

    Решение: Пусть х=0,2(3). Умножим обе части этого равенства на 10. 10х=2,(3). 2,(3) - чистая периодическая дробь и мы знаем, что Чтобы получить число х, надо полученную дробь разделить на 10. Имеем . Значит

  • Слайд 18

    Очевидно, что таким способом можно смешанные периодические дроби переводить сначала в чистые, затем воспользоваться правилом перевода чистой периодической дроби в обыкновенную, и , наконец, не забыть разделить полученную дробь на , где n- количество знаков, на которые надо перенести запятую вправо в исходной смешанной периодической дроби, чтобы записать ее в виде чистой.

  • Слайд 19

    В работе доказывается:

    Чтобы смешанную периодическую дробь представить в виде обыкновенной, нужно в числителе обыкновенной дроби написать разность между числом, стоящим перед вторым периодом и числом, стоящим перед первым периодом. В знаменателе записать столько девяток, сколько цифр в периоде и приписать к ним столько нулей, сколько цифр перед первым периодом.

  • Слайд 20

    Вот и закончена последняя страница в моей работе. Для каждого человека до самого последнего дня есть возможность проснуться, улыбнуться, удивиться и обрадоваться жизни. Вот и сейчас, прикоснувшись к исследованию этого вопроса я научилась удивляться и радоваться малому, пусть даже известному открытию. Чему научило меня время, проведенное наедине с Математикой? …Научило меня быть дерзкой, сильной, уверенной, приобщила меня к благодарному занятию совершенствоваться…бесконечно.. А сама Математика посеяла в моей душе семена любви к наукам, я уверена, что они расцветут цветами необычайной красоты.

Посмотреть все слайды

Сообщить об ошибке