Содержание
-
проект
Подготовлю справочник по геометрии (или как повторить геометрию к экзамену).
-
1. Остроугольный, тупоугольный и прямоугольный треугольник. Катеты и гипотенуза. Равнобедренный и равносторонний треугольник. 2.Основные свойства треугольников. Сумма углов треугольника. Внешний угол треугольника. 3.Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. 4.Замечательные линии и точки в треугольнике: высоты, медианы, Биссектрисы. 5. Срединные перпендикуляры, ортоцентр. 6.Треугольник и окружность. 7.Теорема Пифагора. Соотношение сторон в произвольном треугольнике. ТРЕУГОЛЬНИК и всё связанное с ним. (курс 7-8 классов)
-
Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой( рис.21 ), то это прямоугольный треугольник; стороны a, b, образующие прямой угол, называются катетами; сторона c, противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( рис.22 ), то это тупоугольный треугольник. Треугольник ABC ( рис.23 ) - равнобедренный, если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний, если все его стороны равны ( a = b = c ). В общем случае ( a b c ) мы имеем неравносторонний треугольник.
-
Основные свойства треугольников. В любом треугольнике: 1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны. 3. Сумма углов треугольника равна 180 º . Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 º. 4. Продолжая одну из сторон треугольника , получаем внешний угол . Внешний угол треугольника равен сумме внутренних углов, не смежных с ним. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a b – c; b a – c; c a – b ).
-
ПРИЗНАКИ РАВЕНСТВА!
Признаки равенства треугольников. Треугольники равны, если у них соответственно равны: a) две стороны и угол между ними; b) два угла и прилегающая к ним сторона; c) три стороны. Признаки равенства прямоугольных треугольников. Два прямоугольных треугольника равны, если выполняется одно из следующих условий: 1) равны их катеты; 2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого; 3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого; 4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого; 5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.
-
ЗАМЕЧАТЕЛЬНЫЕ ЛИНИИ И ТОЧКИ В ТРЕУГОЛЬНИКЕ!
Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O, рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O, рис.27 ) – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла. Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD, BE, CF, рис.28 ) пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины. Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD, BE, CF, рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга. Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам; например, на рис.29 AE : CE = AB : BC .
-
Серединный перпендикуляр!
Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка(стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K, M, N – середины сторон треугольника ABC ). В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном - в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.
-
Центр вписанной окружности — точка пересечения биссектрис треугольника. Центр описанной окружности — точка пересечения серединных перпендикуляров центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы; центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.
-
ТеоремаПифагора!(соотношение сторон)
Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов . Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a, b и гипотенузой c. Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна a+ b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2. С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть c 2 + 4 ( ab / 2 ) = c 2 + 2 ab , отсюда, c 2 + 2 ab = ( a + b ) 2 , и окончательно имеем: c 2 = a 2 + b 2 . В общем случае ( для произвольного треугольника ) имеем: c 2 = a 2 + b 2 – 2ab · cos C, где C – угол между сторонами a и b . Соотношение сторон в произвольном треугольнике.
-
Работу выполнила Ученица 9 «Б» класса ГОУ СОШ №337 Ефимочкина Александра. 17.05.11г.
-
Руководитель проекта
Учитель высшей квалификационной категории Мартыненко Оксана Михайловна; ГОУ СОШ №337 Невского административного района Г. Санкт-Петербург. 2011 г.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.