Презентация на тему "Применение математических функций в физике" 9 класс

Презентация: Применение математических функций в физике
Включить эффекты
1 из 26
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.48 Мб). Тема: "Применение математических функций в физике". Предмет: математика. 26 слайдов. Для учеников 9 класса. Добавлена в 2021 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    26
  • Аудитория
    9 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Применение математических функций в физике
    Слайд 1

    Применение математических функций в физике

    Автор-разработчик Гвозденко О.В., учитель математики высшей категории, МБОУ гимназия № 1 г. Красный Сулин

  • Слайд 2

    Пояснительная записка

    Предлагаемый предпрофильный курс предназначен для учащихся 9 классов, желающих научиться решать задачи по математике и физике, используя метод графических образов. Особенностью разработанного курса является проектирование образовательной среды, способствующей развитию творческого понимания ребенка. Курс проводится в первом полугодии 9 класса и рассчитан на 13 часов.

  • Слайд 3

    Данный курс расширяет содержания базисных курсов по алгебре и физике. Курс призван продемонстрировать интеграцию, взаимопроникновение алгебры и физик Учащиеся знакомятся с методами применения знаний по алгебре в другой науке естественно-математического цикла, приобретают общеучебные умения: освоение способов анализа информации, приемов конструирования, способов совместной деятельности.

  • Слайд 4

    Целями изучения курса являются:

    стимулирование всех видов мышления: логического, образного; вооружение учащихся интеллектуальным инструментарием для решения большого числа предметных задач; формирования умения устанавливать связи между личностным опытом ученика и новым знанием; формирование умения кодировать информацию, выполнять преобразование из вербальной в наглядную, образную, символическую, графическую.

  • Слайд 5

    Задачи курса:

    Обобщить материал, изученный в курсе алгебры, систематизировать сведения об основных функциях; сформировать умение применять алгебраические методы в решении физических задач; Показать возможность применения метода графических образов в решении задач на движение; Расширить математический и физический кругозор;

  • Слайд 6

    Ожидаемые результаты:

    овладение основными мыслительными операциями: анализ, синтез, сравнение, обобщение, умозаключение и др.; овладение умением формирования графического образа и умения получать информацию с помощью графического образа; формирования стойкого состояния успешности в решении задач с использованием графического образа; Овладеют умением представления информации с помощью различных знаковых систем: текста, формул, графиков, таблиц, рисунков, схем; Приобретение и развитие навыков самостоятельной работы с различными источниками информации; понимание использования того или иного образа для выяснения физической сути явления, процесса, величины.

  • Слайд 7

    Модельные средства:

    эвристические рисунки, диаграммы, графические образы, схемы, графики, диалог ( для активизации мыслительной деятельности учащихся при обучении учащихся извлекать информацию (числовую, главную, полную)) эмоциональные создание ситуаций успеха, игровые ситуации, презентации исследовательские конструирование графического образа (с целью обучения учащихся организации оптимального взаимодействия речевых и образных компонентов мышления, умению строить графики и диаграммы, производить вычисления, делать выводы).

  • Слайд 8

    Стержневые направления:

    Введение. Функция - поворотный пункт в математике.(1 час) Методы математического моделирования (2 часа) Прямая и обратная пропорциональность. (4 часа). Линейная функция. (2 часа) Квадратичная функция. (2 часа) Заключительное занятие.(1 час).

  • Слайд 9

    Литература:

    Л.Ф. Пичурин., За страницами учебника алгебры.-М., Просвещение, 1990. М.С.Атаманская, Технология графических образов6 Методический сборник.- Ротсовн/Д.: Изд-во РО ИПК и ПРО, 2004.- 48 с. Учебники. А.В.Перышкин, Физика-9,М., Дрофа,2007. А.В.Перышкин, Физика-8,М., Дрофа,2004. Н.С.Пурышева, Физика-,Дрофа,2008. Математика в школе,№5-2005.Графическое моделирование в задачах на движение.(стр.78) Приложение к газете 1 сентября «Математика», №14-2008, Интегрированный урок. Решаем задачи с физическим содержанием, З. Гамалиева, И.Ткачук.

  • Слайд 10

    Прямая и обратная пропорциональности

    «Выращивание готовности» Проживание реальной ситуации+моделирование

  • Слайд 11

    Организация диалога

    Как менялось положение шарика с течением времени? Одинаковое ли расстояние проходил шарик за одни и те же промежутки времени? Как называется такое движение в физике? Как найти пройденный путь графически? Можно ли сказать, что путь менялся пропорционально времени? Какое физическое уравнение позволяет описать движение падающего шарика?

  • Слайд 12

    Вычислим пройденные пути как площади треугольников под графиком скорости: S1=1/2*1*9,8=4,9 м S2= 1/2*2*19,6=19,6 м S3=1/2*3*29,4=44,1 м S4=1/2*4*39,2=78,4 м  

  • Слайд 13

    округлим полученные значения и запишем в виде таблицы:

    Мы получили пример того, как из опыта, из наблюдений рождается закон, который удаётся записать на математическом языке. Описанный результат впервые был получен великим итальянским учёным Галилео Галилеем(1564-1642)

  • Слайд 14

    Задача 1.

    Водитель, двигаясь по улице, совершил наезд на пешехода. Согласно объяснениям водителя и показаниям свидетелей, пешеход (ребенок семи лет) выбежал из-за стоящего у обочины автофургона в тот момент, когда автомобиль, уп­равляемый этим водителем, находился рядом со знаком, огра­ничивающим скорость движения до 40 км/ч. Водитель утверждает, что в момент наезда он двигался с предписанной знаком скоростью.

  • Слайд 15

    x S t V= ----- S t V Действительно ли скорость движения автомобиля была равна 40 км/ч?

  • Слайд 16

    Задача распадается на две: зная расстояние от автофургона до места ДТП и возможную скорость движения ребёнка, найти время движения ребёнка от автофургона до места ДТП учитывая найденное время и расстояние от дорожного знака до места ДТП, найти скорость автомобиля

  • Слайд 17

    Прямолинейным равномерным движением называется движение, при котором тело за любые равные промежутки времени совершает равные перемещения. S1 S2 S3 S4 S5 S6 S7 t1 t2 t3 t4 t5 t6 t7 = = = = = = = = = = = =

  • Слайд 18

    x S a= 0, S=V*t V Считаем, что скорость ребенка с течением времени не изменяется, поэтому

  • Слайд 19

    Из уравнения равномерного прямолинейногодвижения следует, что t =s/v Вычислим возможное время движения ребенка: если v = 9,3 км/ч = 2,6 м/с. Тогда t = 5,5 м : 2,6 м/с — 2,1 с; если v = 15,6 км/ч = 4,3 м/с, тогда t= 5,5 м : 4,3 м/с = 1,3 с. Итак, возможное время движения ребенка от автофургона до места ДТП находится в интервале от 1,3 до 2,1 с.

  • Слайд 20

    x S t S= V v xt Найдем возможную скорость движения автомобиля, учитывая, что расстояние, которое он преодолел, от знака до места ДТП составляет 29 м

  • Слайд 21

    0 x0 x x X= X0+ Sx Sx= Vxt Sx S Vxt S Vxt Vxt Vxt Vxt X=X0+Vxt V если t = 2,1 с, то v = 13,8 м/с = 49,7 км/ч; если t = 1,3 с, то v = 22,3 м/с = 80,3 км/ч. Ответ на вопрос задачи, с точки зрения физики, звучит так: «Скорость автомобиля (с учетом воз­можных значений скорости ребенка) лежит в ин­тервале от 49,7 км/ч до 80,3 км/ч». Ответ с точки зрения эксперта-криминалиста: «Скорость автомобиля, управляемого водителем, превышала 40 км/ч».

  • Слайд 22

    S t h t0 V4 t = V-Vo a ребенок автомобиль График — прямая, проходящая через две точки: начало коорди­нат и точку с координатами (t0, 29), где 29 м расстояние от дорожного знака до места ДТП. По графику находим значение расстояния при t = 1. Это и есть численное значение скорости автомобиля в момент наезда (=14 м/с = 50,4км/ч) .

  • Слайд 23

    V Vo a Аналогично получим скорость автомобиля в случае, если скорость ребенка составляет 15,6 км/ч = = 4,3 м/с (рис. 3, б). Скорость автомобиля в момент ДТП равна приблизительно 22 м/с = 79,2 км/ч.

  • Слайд 24

    «Скорость автомобиля, управляемого водителем N, превышала 40 км/ч».

  • Слайд 25

    Задача 2.

    Пешеход, велосипедист и мотоциклист двигались по шоссе в одну сторону каждый со своей постоянной скоростью. В момент, когда пешеход и велосипедист находились в одной точке, мотоциклист отставал от них на 6 км. Когда мотоциклист догнал велосипедиста, пешеход отставал от них на 3 км. На сколько километров велосипедист обогнал пешехода в тот момент, когда пешехода настиг мотоциклист?

  • Слайд 26

    Задача 3.

    Велосипедист отправляется из А в В и после 15-минутного отдыха в пункте В возвращается в пункт А. На пути из А в В велосипедист догоняет в 11 часов пешехода, который движется из А в В со скоростью, в 4 раза меньшей, чем у велосипедиста. В 12 часов происходит вторая встреча пешехода и велосипедиста. Определить время отправления велосипедиста из пункта А, если известно, что велосипедист возвращается в пункт А одновременно с прибытием пешехода в пункт В.

Посмотреть все слайды

Сообщить об ошибке