Презентация на тему "Сфера. Шар"

Презентация: Сфера. Шар
1 из 8
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.38 Мб). Тема: "Сфера. Шар". Предмет: математика. 8 слайдов. Добавлена в 2017 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    8
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Сфера. Шар
    Слайд 1

    Сфера Шар ,

  • Слайд 2

    Определения

    Сфера-это фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Шар-это фигура, состоящая из всех точек пространства, находящихся на расстоянии не большем данного от данной точки (или фигура, ограниченная сферой).

  • Слайд 3

    Площадьсферы

    Для определения площади сферы воспользуемся понятием описанного многогранника. Многогранник называется описанным около сферы (шара) , если сфера касается всех его граней. При этом сфера называется вписанной в многогранник. Пусть описанный около сферы многогранник имеет n-граней. Будем неограниченно увеличивать n таким образом, чтобы наибольший размер каждой грани стремился к нулю. За площадь сферы примем предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. Можно доказать, что этот предел существует, и получить формулу для вычисления площади сферы радиуса R : S=4ПR2

  • Слайд 4

    ..

    Точка О называется центром сферы, R-радиус сферы. Любой отрезок, соединяющий центр и какую-нибудь точку сферы, называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы. Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы. Теорема: Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости. Сфера

  • Слайд 5

    шар Граница шара называется шаровой поверхностью или сферой. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Касательная плоскость имеет с шаром только одну общую точку – точку касания.

  • Слайд 6

    Уравнение сферы

    В прямоугольной системе координат уравнение сферы радиуса R с центром С (х0;у0;z0) имеет вид (х-х0)2+(у-у0)2+(z-z0)2=R2

  • Слайд 7

    Шаровой сегмент

    Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью. Круг, получившийся в сечении, называется основанием каждого из этих сегментов. Объём шарового сегмента

  • Слайд 8

    Шаровой сектор

    Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 900 ,вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов. Формула нахождения объема шарового сектора

Посмотреть все слайды

Сообщить об ошибке