Содержание
-
Геометрия 11 класс
Корниенко Татьяна Федоровна
-
Если в одной из 2 параллельных плоскостей взять окружность, и из каждой ее точки восстановить перпендикуляр до пересечения со второй плоскостью, то получится тело, ограниченное двумя кругами и поверхностью, образованной из перпендикуляров, это тело называется цилиндром. 1.Как можно получить цилиндр Круги, лежащие в параллельных плоскостях, называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей оснований –называются образующими цилиндра.
-
А можно так получить цилиндр Вращением прямоугольника вокруг одной из его сторон
-
2.Понятие цилиндрической поверхности 1 2 3 4 1. Основание цилиндра 2. Образующие 3.Ось цилиндра 4. Радиус основания 4 Радиусом цилиндра называется радиус его основания.
-
Образующая цилиндра при вращении вокруг своей оси образует боковую (цилиндрическую) поверхность цилиндра. 1 2 3 4 4 2. Образующие Поверхность, состоящая из образующих, называется боковой поверхностью цилиндра.
-
Если сечение проходит через ось цилиндра, то оно имеет форму прямоугольника и называется «осевым» Сечение плоскостью, перпендикулярной к оси или параллельное основаниям, является кругом. β α β о о1 γ 3.Сечения цилиндра Сечение , параллельное оси цилиндра-прямоугольник
-
5.Касательная плоскость цилиндра Касательной плоскостью к цилиндру называется плоскость проходящая через образующую цилиндра и перпендикулярная плоскости осевого сечения, содержащей эту образующую
-
Разверткой боковой поверхности цилиндра является прямоугольник со сторонами Н и С, где Н – высота цилиндра, а С – длина окружности основания. н С=2πR S=πR² S=πR²
-
6.Плошадь поверхности цилиндра S(полн.поверхн.)=2πR(R+h) S(бок.поверхн.)= 2πRh Sосн=πR² н С=2πR S=πR² S=πR² S(полн.поверхн.)=2πR²+2πRh
-
Конус Пусть прямоугольный треугольник вращается вокруг одного из катетов, тогда второй катет описывает окружность. Полученная при вращении фигура называется конусом. 3. Гипотенуза данного треугольника-образующая конуса 4.Катет, вокруг которого вращается треугольник – ось конуса, Второй катет- радиус описываемой окружности основания
-
Конус и его развертка L H R L-образующая H-высота R-радиус основания L R Sбок=πRL S=πR² Нахождение Sбок Sполн=πRL+πR²= =πR(R+L)
-
Осевое сечение конуса-равнобедренный треугольник Сечение конуса, перпендикулярное оси конуса имеет форму круга
-
S Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью,параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса. Осевое сечение ус. конуса- -равнобедренная трапеция
-
Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями. ℓ h R r Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.
-
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Сфера и шар
-
о о м м с О(0;0;0) M(x;y;z) Уравнение сферы
-
d>R d=R d
-
О А α Плоскость , имеющая со сферой одну общую точку, называется касательной к сфере Радиус сферы, проведенный к точке касания сферы и плоскости перпендикулярен к касательной плоскости. ОА┴α А′ ОА=R, если ОА┴α, то любая другая ОА′- наклонная, а любая наклонная больше , чем ОА, т.е. условие не выполняется( ОА′>R) Обратная теорема : Если ОА┴α, α-касательная плоскость Т.к. перпендикуляр и плоскость имеют одну общую точку, то α- касательная плоскость
-
Шаровой слой Шаровой слой Шаровым слоем называется часть шара, заключенная между двумя параллельными секущими плоскостями.
-
Шаровой сегмент АВ = h Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью.
-
Шаровой сектор Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 900, вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.