Презентация на тему "Векторы (8 класс)"

Презентация: Векторы (8 класс)
Включить эффекты
1 из 16
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Векторы (8 класс)" для 8 класса в режиме онлайн с анимацией. Содержит 16 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    16
  • Аудитория
    8 класс
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Векторы (8 класс)
    Слайд 1

    Векторы8 класс

  • Слайд 2

    Историческая справка

    Термин вектор (от лат. Vector – “ несущий “) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона (1805 – 1865) в работах по построению числовых систем.

  • Слайд 3

    Что такое вектор?

    Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением: например, скорость, сила, давление. Такие величины называютсявекторными величинамииливекторами.

  • Слайд 4

    Геометрическое понятие вектора

    Наиболее наглядно величину и направление одновременно можно задать с помощью направленного отрезка – вектора. Направление вектора указывается стрелкой. Точка Aназывается началом вектора, а точкаB– концом. Векторы обозначаются латинскими буквами a, b, c, …, а также AB, CD, … (на первом месте ставится начало вектора). В А Начало вектора Конец вектора C D a b c

  • Слайд 5

    Нулевой вектор

    Любую точку плоскости можно считать вектором. Такой вектор называется нулевым. Начало нулевого вектора совпадает с его концом. Нулевой вектор обозначается 0 или СС. М С CC - нулевой вектор MM - нулевой вектор

  • Слайд 6

    Длина вектора

    Расстояние между началом и концом вектора называется длиной или модулем вектора. Длина вектора обозначается |а| или |АВ|. Длина нулевого вектора считается равной нулю. a C D N |AB| = 6|CD| = 5 |a| = 5|NN| = 0 (каждая клетка на рисунке имеет сторону, равную единице измерения отрезков)

  • Слайд 7

    Коллинеарные векторы

    Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Нулевой вектор считается коллинеарным любому вектору. a C D b F K O m N P CD, KF, O, a, b – коллинеарные O, a – коллинеарные O, NP – коллинеарные NP, m – не коллинеарные

  • Слайд 8

    Направление векторов

    Если два ненулевых вектора коллинеарны и направлены одинаково, то эти векторы называются сонаправленными. Если два ненулевых вектора коллинеарны и направлены противоположно, то эти векторы называются противоположно направленными. Нулевой вектор сонаправлен с любым вектором. a ↑↑CD b ↑↑KF a C D F K b

  • Слайд 9

    Если два ненулевых вектора коллинеарны и направлены одинаково, то эти векторы называются сонаправленными. Если два ненулевых вектора коллинеарны и направлены противоположно, то эти векторы называются противоположно направленными. Нулевой вектор сонаправлен с любым вектором. a ↑↑CD b ↑↑KF a ↑↓b a ↑↓ KF C D a F K b

  • Слайд 10

    Если два ненулевых вектора коллинеарны и направлены одинаково, то эти векторы называются сонаправленными. Если два ненулевых вектора коллинеарны и направлены противоположно, то эти векторы называются противоположно направленными. Нулевой вектор сонаправлен с любым вектором. a ↑↑CD b ↑↑KF a ↑↓b a ↑↓ KF MM ↑↑a MM ↑↑b M a C D F K b

  • Слайд 11

    Равенство векторов

    Векторы называются равными, если они сонаправлены и их длины равны. Равенство векторов обозначается: a = b Все нулевые векторы равны друг другу. a b M C CC = MM a   b a = b │a │=│b │ 

  • Слайд 12

    Откладывание вектора от данной точки

    От любой точки можно отложить вектор, равный данному вектору, и притом только один. а А В М N' N p M  p p II AB MN = AB MN' = AB MN = a

  • Слайд 13

    Задача

    Какие из векторов, изображенных на рисунке: коллинеарны; сонаправлены; противоположно направлены; имеют равные длины? Отложите эти векторы от одной точки. a b d c

  • Слайд 14

    На рисунке изображена равнобедренная трапеция KLMN. а) Укажите сонаправленные, противоположно направленные, равные вектора. б) Укажите векторы, длины которых равны. Равны ли при этом сами векторы? K L M N

  • Слайд 15

    Задачи

    Даны вектор BC и точка D(1;-2). Отложите от точки D вектор, равный вектору BC. Как должен быть расположен ненулевой векторaотносительно прямойk, чтобы нашлись лежащие на этой прямой векторы, равныеa? Сколько таких векторов найдется? Отметьте на чертеже три из них. Векторы AB и DC равны. Докажите, что если точки A, B, C и D не лежат на одной прямой, то четырехугольник ABCD ― параллелограмм.

  • Слайд 16

    На рисунке изображен параллелограмм ABCD.Укажите векторы, длины которых равны. Равны ли при этом сами векторы? В ромбе ABCD lACl = 12см, lBDl= 16см. От вершины A отложен вектор AE, равный вектору BD. Найдите длину вектора EC. Отметьте две точки A и B. Найдите такую точку X, что: а) AX = XB; б) AX = BX; в) XA = XB. A B C D

Посмотреть все слайды

Сообщить об ошибке