Презентация на тему "Цилиндр, конус, шар"

Презентация: Цилиндр, конус, шар
Включить эффекты
1 из 21
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Цилиндр, конус, шар" по математике. Презентация состоит из 21 слайда. Для учеников 7-11 класса. Материал добавлен в 2017 году. Средняя оценка: 4.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.37 Мб.

Содержание

  • Презентация: Цилиндр, конус, шар
    Слайд 1

    Объёмы и поверхности тел вращения

    Учитель математики МОУ СОШ №8 х. Шунтук Майкопскского района Республики Адыгея Грюнер Наталья Андреевна pptcloud.ru

  • Слайд 2

    Тела вращения

  • Слайд 3

    оглавление 1.Виды тел вращения2.Определения тел вращения: а)цилиндр б)конус в)шар 3.Сечения тел вращения: а)цилиндр б)конус в)шар 4.Объёмы тел вращения5.Площади поверхностей тел вращения Завершить работу

  • Слайд 4

    ВИДЫ ТЕЛ ВРАЩЕНИЯ Цилиндр-тело, которое описывает прямоугольник при вращении его около стороны как оси Конус-тело, которое получено при вращении прямоугольного треугольника вокруг его катета как оси Шар-тело полученное при вращении полукруга вокруг его диаметра как оси

  • Слайд 5

    ОПРЕДЕЛЕНИЕ ЦИЛИНДРА Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки,соединяющие соответствующие точки окружностей кругов,образующими цилиндра.

  • Слайд 6

    ОПРЕДЕЛЕНИЕ КОНУСА Конусом называется тело,которое состоит из круга-основания конуса,точки, не лежащей в плоскости этого круга,вершины конуса и всех отрезков,соединяющих вершину конуса с точками основания.

  • Слайд 7

    СЕЧЕНИЯ ЦИЛИНДРА Сечение цилиндра плоскостью,параллельной его оси,представляет прямоугольник. Осевое сечение-сечение цилиндра плоскостью,проходящей через его ось Сечение цилиндра плоскостью, параллельной основаниям, представляет собой круг.

  • Слайд 8

    ОПРЕДЕЛЕНИЕ ШАРА Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии,не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

  • Слайд 9

    СЕЧЕНИЕ КОНУСА Сечение конуса плоскостью,проходящей через его вершину, представляет собой равнобедренный треугольник. Осевое сечение конуса-это сечение, проходящее через его ось. Сечение конуса плоскостью, параллельной его основаниям, представляет собой круг с центром на оси конуса.

  • Слайд 10

    СЕЧЕНИЯ ШАРА Сечение шара плоскостью есть круг. Центр этого шара есть основание перпендикуляра,опущенного из центра шара на секущую плоскость. Сечение шара диаметральной плоскостью называется большим кругом.

  • Слайд 11

    ОБЪЁМЫ ТЕЛ ВРАЩЕНИЯ

  • Слайд 12

    ПЛОЩАДИ ПОВЕРХНОСТЕЙ ТЕЛ ВРАЩЕНИЯ

  • Слайд 13

    Объём шараТеорема. Объём шара радиуса R равен.

    Доказательство. Рассмотрим шар радиуса Rсцентром в точке О и выберем ось Ох произвольным образом (рис. ). Сечение шара плоскостью, перпендикулярной к оси Ох и проходя­щей через точку М этой оси, является кругом с центром в точке М. Обозначим радиус этого круга через r, а его площадь через S(х), где х — абсцисса точки М. Выразим S(х) через х и R. Из прямоугольного треугольника ОМС находим:                   (2.6.1) Так как , то(2.6.2)          Заметим, что эта формула верна для любого положения точки М на диаметре АВ, т. е. Для всех х,удовлетворяющих условию . Применяя основную формулу для вычисления объемов тел при , получим Теорема доказана.

  • Слайд 14

    Шаровой сегмент. Объём шарового сегмента.

    Шаровым сегментом называется часть шара, отсеченная от него плоскостью. Всякая плоскость, пересекающая шар, разбивает его на два сегмента. Объема сегмента

  • Слайд 15

    Шаровой сектор . Объём шарового сектора.

    Шаровой сектор, тело, которое получается из шарового сегмента и конуса. Объём сектора V=2/3ПR2H

  • Слайд 16

    Задача № 1.

          Цистерна имеет форму цилиндра ,к основаниям которой присоединены равные шаровые сегменты. Радиус цилиндра равен 1,5 м, а высота сегмента равна 0,5 м. Какой длины должна быть образующая цилиндра, чтобы вместимость цистерны равнялась 50 м3?

  • Слайд 17

    Дано: . .        - шаровые сегменты.                                         ответ:~6,78.  м.    Решение:

  • Слайд 18

    Задача № 2.

    О- центр шара. О1-центр круга сечения шара. Найти объём и площадь поверхности шара.

  • Слайд 19

    Дано: шар сечение с центром О1.Rсеч.=6см. Угол ОАВ=300.Vшара=? Sсферы=?

    Решение: V=4/3ПR2 S=4ПR2 В ∆ ОО1А:угол О1=900,О1А=6, угол ОАВ=300.tg300=ОО1/О1АОО1=О1А*tg300.ОО1=6*√3÷3=2√3 ОА=R=OO1(по св-ву катета леж.против угла 300). ОА=2√3÷2=√3 V=4П(√3)2÷3=(4*3,14*3)÷3=12,56 S=4П(√3)2=4*3,14*3=37,68 Ответ:V=12,56; S=37,68.

  • Слайд 20

    Задача № 3

    Полуцилиндрический свод подвала имеет 6м. длины и 5,8м. в диаметре.Найдите полную поверхность подвала.

  • Слайд 21

    Дано:Цилиндр.АВСД-осевое сечение. АД=6м. D=5,8м.Sп.под.=?

    Решение : Sп.под.=(Sп÷2)+SАВСД Sп÷2=(2ПRh+2ПR2)÷2=2(ПRh+ПR2)÷2=ПRh+ПR2 R=d÷2=5,8÷2=2,9 м. Sп÷2=3,14*2,9+3,14*(2,9)2= 54,636+26,4074=81,0434 АВСД-прямоуг.(по опр.осев.сеч.) SАВСД=АВ*АД=5,8*6=34,8м2 Sп.под.=34,8+81,0434≈116м2. Ответ:Sп.под.≈116м2.

Посмотреть все слайды

Сообщить об ошибке