Презентация на тему "Задача Эйлера"

Презентация: Задача Эйлера
Включить эффекты
1 из 9
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Задача Эйлера" по математике. Презентация состоит из 9 слайдов. Материал добавлен в 2017 году.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.29 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    9
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Задача Эйлера
    Слайд 1

    Задача Эйлера

    То, что не получилось на рисунке, не является доказательством невозможности соединения дорожками домиков и колодцев. Для доказательства воспользуемся следующей теоремой Эйлера. Задача.Три соседа имеют три общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу?

  • Слайд 2

    Теорема Эйлера

    Теорема.Для связного простого графа имеет место равенство В - Р + Г = 2,где В - число вершин, Р - общее число ребер, Г - число областей (граней), на которые граф разбивает плоскость. Доказательство.Стянем какое-нибудь ребро графа, соединяющее две вершины, в точку. При этом число ребер и число вершин уменьшаться на единицу и, следовательно, В – Р + Г не измениться. Продолжая стягивать ребра, мы придем к графу, у которого имеется одна вершина, а ребрами являются петли. Уберем какое-нибудь ребро. При этом число ребер и число областей уменьшаться на единицу и, следовательно, В – Р + Г не изменится. Продолжая убирать ребра, мы придем к графу, у которого имеется одна вершина и одно ребро. У этого графа В = 1, Р = 1, Г = 2 и, следовательно, В – Р + Г = 2. Значит, для исходного графа также выполняется равенство В – Р + Г = 2.

  • Слайд 3

    Решение задачи Эйлера

    Предположим, что можно провести непересекающиеся дорожки от каждого дома к каждому колодцу. Рассмотрим граф, вершинами которого являются домики и колодцы, а ребрами – дорожки. У него В = 6, Р = 9 и, следовательно, Г = 5. Каждая из пяти областей ограничена, по крайней мере,четырьмя ребрами, поскольку, по условию задачи, ни одна из дорожек не должна непосредственно соединять два дома или два колодца. Так как каждое ребро разделяетдве области, то количество ребер должно быть не меньше (5∙4)/2 = 10, что противоречит тому, что их число равно 9.

  • Слайд 4

    Упражнение 1

    Посчитайте число вершин (В), ребер (Р) и областей (Г) для графов, изображенных на рисунке. Ответ: а) В = 8, Р = 12, Г = 6; б) В = 6, Р = 12, Г = 8; в) В = 20, Р = 30, Г = 12; г) В = 12, Р = 30, Г = 20.

  • Слайд 5

    Упражнение 2

    Посчитайте число вершин (В), ребер (Р) и граней (Г) для многогранников, изображенных на рисунке. Чему равно В – Р + Г? Ответ: а) В = 4, Р = 6, Г = 4; б) В = 8, Р = 12, Г = 6; в) В = 6, Р = 12, Г = 8; г) В = 20, Р = 30, Г = 12; д) В = 12, Р = 30, Г = 20.

  • Слайд 6

    Упражнение 3

    Два соседа имеют: а) три общих колодца; б) четыре общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу? Ответ: а), б) Да.

  • Слайд 7

    Упражнение 4

    Три соседа имеют: а) два общих колодца; б) четыре общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу? Ответ: а) Да; б) нет.

  • Слайд 8

    Упражнение 5

    Четыре соседа имеют четыре общих колодца. Можно ли провести непересекающиеся дорожки так, чтобы каждый домик был соединен с тремя колодцами? Ответ: Да.

  • Слайд 9

    Упражнение 6

    Докажите, что пять домиков нельзя соединить непересекающимися дорожками так, чтобы каждый домик был соединен с тремя колодцами? Предположим, что это сделать можно. Тогда мы имеем связный простой граф, у которого В = 5, Р = 10 и, следовательно, Г = 7. С другой стороны, поскольку каждая область ограничена, по крайней мере тремя ребрами, то число ребер должно быть больше или равно Противоречие.

Посмотреть все слайды

Сообщить об ошибке