Содержание
-
.Основные ферменты, которые используются в клинической диагностике
Аспартатаминотрансфераза (ACT) Аминотрансфера́зы (трансаминазы) — ферменты из группы трансфераз, переносящие группы атомов, содержащие азот. К этой группе ферментов относятся такие важные для клинической лабораторной диагностики ферменты, как АСТ и АЛТ. Аспартатаминотрансфераза (ACT; глутамат-оксалоанетат-тран-саминаза; GOT L-аспартат: 2-оксоглутаратаминотрансфераза, КФ 2-6.1.1) катализирует реакцию переаминирования (трансаминирования) между аспартатом и α-кетоглутаратом: α -Кетоглутарат + L-аспартат ↔ L-глутамат + оксалоацетат. У млекопитающих наиболее высокая активность и концентрация ACT отмечена в печени, нервной ткани, скелетной мускулатуре и миокарде. Незначительная активность ACT определена и в крови здоровых людей. В большинстве тканей существует как минимум два изофермента ACT: митохондриальный изофермент (мАСТ), на всех поддерживающих средах движущийся к катоду, и растворимый в цитозоле изофермент ACT (цАСТ), мигрирующий к аноду. цАСТ состоит из двух идентичных субъединиц; это димер с молекулярной массой 93 кДа. мАСТ - тоже димер с молекулярной массой 91 кДа. Выделение изоферментов выявило существование нескольких изоформ со сходной кинетикой, но выраженными иммунологическими различиями. Изоферменты ACT имеют некоторое различие кинетических характеристик: оптимум действия мАСТ более низкий, чем цАСТ.
-
3.2. Аланинаминотрансфераза (АЛТ)
Аланинаминотрансфераза (АЛТ; глутамат-пируваттрансаминаза; GPT, L-аланин: 2-оксоглутаратаминотрансаминаза, КФ 2.6.1.2) катализирует реакцию переаминирования между L-аланином и α-кетоглутаратом: L-аланин + α-кетоглутарат ↔ пируват + L-глутамат. АЛТ - вторая активная аминотрансфераза, выделенная из тканей человека. АЛТ присутствует во многих органах: печени, почках, скелетных мышцах, миокарде, поджелудочной железе. Невысокая активность АЛТ отмечена и в сыворотке крови здоровых людей. Как и ACT, АЛТ присутствует в клетках в форме двух изоферментов - цитозольного и митохондриального, но последний нестабилен, содержание его в клетке низкое.
-
Большое практическое значение имеет упоминание лекарственных препаратов, обладающих невыраженным гепатотоксическим свойством. К ним на основании накопленного многими исследователями опыта относят аспирин, индометацин, линкомицин, анаболические стероиды, пероральные контрацептивы, тестостерон и другие андрогены, прогестерон, сульфаниламиды, пиридоксин, барбитураты, препараты меди и железа, антибиотики ( гентамицин, ампициллин, тетрациклин). Активность ACT в крови возрастает при туберкулезе легких, септицемии, герпетической инфекции, вирусном гепатите, опухолях. Активность ACT снижается при малярии и беременности, не меняется при эмболии легочной артерии, пневмониях, абсцессах легкого, ревматоидном артрите. Увеличение активности АЛТ отмечено у пациентов при терапии некоторыми лекарственными средствами, особенно антибиотиками, гиполипидемическими препаратами, кетоацидозе, азотемии. Исследование отношения мАСТ/общая активность ACT также было предложено в качестве диагностического теста. Отношение мАСТ/общая активность ACT снижено при общем гепатите и не изменено при обтурации желчных протоков, алкогольном поражении печени, метастазах в печень. Появление в сыворотке крови высокой активности мАСТ свидетельствует о некротических процессах в гепатоцитах. В остром периоде инфаркта миокарда повышение активности ACT — достоверный диагностический тест. В то же время активность ACT повышена в значительно меньшей степени, чем активность КК или ЛДГ. Клинико-морфологические исследования показали, что динамику активности ACT можно использовать для расчета объема поражения при инфаркте миокарда при небольших очагах некроза миоцитов столь же достоверно, как и на основании активности КК. Предложено использовать повышение активности ACT в сыворотке крови как прогностический тест при остром лейкозе.
-
.Амилаза
α-Амилаза [α -(1,4)-глюкан-4-глюканогидролаза, КФ 3.2.1.1] -фермент, гидролизующий внутренние 1,4 α -гликозидные связи крахмала, гликогена и других полимеров глюкозы. В организме человека основные источники α -амилазы - поджелудочная и слюнные железы. Многочисленные изоформы, выделенные из биологических жидкостей и тканей человека, представляют собой, вероятно, гетерогенные продукты посттрансляционных изменений двух семейств изоферментов амилазы, синтез которых кодируют два локуса гена Ату-1, слюнной (С) тип амилазы и Ату-2, панкреатический (П) тип фермента, тесно связанные в хромосоме 1. Изоферменты С и П не имеют больших различий в аминокислотном составе. Гель-фильтрацией на сефадексе во фракции С-амилаз выделены две изоформы, одна из которых содержит углеводы. Молекулярная масса изоформ, содержащих углеводы, 57 кДа, не содержащих углеводы - 55 кДа. Изоэлектрические точки основных изоформ С-изоамилаз от 5,5 до 6,5. П-группа изоамилаз имеет меньшую молекулярную массу (53 кДа) и не содержит углеводов. Изоэлектрические точки этих белков варьируют от 5,7 до 7,0. Убедительным доказательством того, что П-тип амилазы образуется только в поджелудочной железе, служит отсутствие этого изофермента у лиц с тотальной панкреатэктомией. С-изофермент α-амилазы, напротив, может быть синтезирован в разных органах и тканях. Высокая активность С-амилазы зафиксирована в ткани фаллопиевых труб и содержимом кисты яичников. Специфическая группа изоамилаз, продуцируемых тканями женских половых органов, не выявляется в сыворотке крови или моче здоровых людей; распределение изоамилаз идентично у мужчин и женщин. Изоамилазы, принадлежащие к С-группе, обнаружены и в женском молоке и раневой жидкости.
-
Клиническое значение определения активности амилазы в сыворотке крови.
Определение активности α-амилазы в сыворотке крови - наиболее распространенный тест диагностики острого панкреатита. При остром панкреатите активность фермента в сыворотке крови возрастает через 3-12 ч после болевого приступа, достигает максимума через 20—30 ч и возвращается к норме при благоприятном течении в пределах четырех дней. Активность α-амилазы (диастазы) в моче возрастает через 6-10 ч после подъема активности в сыворотке и возвращается к норме чаще всего через три дня после подъема. В настоящее время широко известно, что увеличение обшей активности α-амилазы неспецифично для панкреатита и других заболеваний поджелудочной железы. Клинические исследования показали, что повышение активности α-амилазы происходит при ряде заболеваний, к которым относят кишечную непроходимость, заболевания желчных путей, аппендицит, паротит, внематочную беременность. Чувствительность и специфичность определения α-амилазы при диагностике острого панкреатита возрастают при изменении границ нормальных значений (дискриминационный уровень нормы и патологии — активность1,5—2 раза превышающая верхние границы нормы). В этом случае определение активности α-амилазы наиболее информативны первые сутки развития острого панкреатита. По мнению ряда авторов, определение активности α-амилазы в сыворотке крови при хроническом панкреатите не имеет диагностического значения. У человека α-амилазу, свободно проходящую через фильтрационный барьер почечных телец, реабсорбируют клетки эпителия почечных канальцев так же, как и другие низкомолекулярные белки сыворотки крови. Увеличение активности амилазы в сыворотке крови может быть вызвано нарушением элиминации фермента. Пример — состояние, называемое макроамилаземией, когда фермент связан с иммуноглобулинами сыворотки крови и образует макромолекулярный комплекс. Такой комплекс не фильтруется в мочу и не может быть удален при помощи каких-то иных механизмов, что ведет к значительному и порой длительному увеличению активности α-амилазы в сыворотке крови. Макроамилаземия встречается у здоровых людей с частотой 1%, у лиц с гиперамилаземией - с частотой 2,5%. Макроамилаземия может быть диагностирована методом ультрацентрифугирования, ЭФ, гельхроматографии, предложен также простой тест преципитации комплекса полиэтиленгликолем. Активность α -амилазы в сыворотке крови часто увеличена при почечной недостаточности, однако не совсем ясно, что является причиной такого увеличения - возрастание образования фермента или снижение его элиминации. В таких случаях дополнительную информацию может дать определение скорости экскреции α -амилазы или расчет клиренса фермента. По данным многих авторов, наиболее чувствительным и специфичным тестом для диагностики панкреатита служит уровень активности П-изофермента α -амилазы. Особое значение этот тест приобретает, если у больного с предполагаемым диагнозом панкреатита обнаружена нормальная общая активность амилазы. По сниженной активности П-амилазы может быть диагностирован хронический панкреатит. Доля П-изоамилаз в обшей активности α -амилазы значительно выше в моче, чем в сыворотке крови, возможно, вследствие различий в экскреции изоферментов почками. Тем не менее диагностическое значение определения активности изоферментов α-амилазы в моче уступает таковому в крови.
-
-Глутамилтранспептидаза
ГГТ катализирует перенос у-глутамила на аминокислоту или пептид, на другую молекулу субстрата или воду. ГГТ - белок, состоящий из одной полипептидной цепи с молекулярной массой 90 кДа. Фермент содержит гидрофильный и гидрофобный фрагменты. Активный центр расположен на гидрофильном участке полипептидной цепи. Гидрофобная область — часть цепи, которой фермент прикреплен к мембране. Если экстракцию фермента из тканей провести с использованием в качестве детергента желчных кислот или тритона Х-100, ГГТ вместе с гидрофобным участком может быть переведена в раствор. Если в экстрагирующую смесь включены только протеазы (папаин или трипсин), гидрофобный фрагмент ГГТ остается на мембране, а в растворе оказывается гидрофильная часть полипептида ГГТ. Гидрофильные фрагменты ГГТ, изолированные из печени или почек, иммунологически сходны, так же как и гидрофобные фрагменты ГГТ, изолированные из разных органов. ГГТ занимает важное место в метаболизме аминокислот. Комплекс биохимических реакций реабсорбции аминокислот из первичной мочи, профильтрованной через фильтрационный барьер почечных телец, назван глутамиловым циклом. Этот процесс начинается с действия ГГТ, которая расположена на наружной поверхности клеточной мембраны и связывает аминокислоту первичной мочи с клеткой эпителия канальцев при участии естественного субстрата глутатиона, образуя тройной комплекс: аминокислота-ГГТ-глутатион. Отмечено ингибирование реакции высокими концентрациями субстратов. Как следствие связывания двух субстратов в активном центре фермента происходит перенос глутамиловой кислоты от глутатиона к аминокислоте. В этой фазе цикла аминокислоту переносят в клетку, где происходят последующие реакции, в которых глутамиловая цикло-трансфераза расщепляет связь между амино- и глутамиловой кислотой, потребляя молекулу АТФ. Присутствие ГГТ на мембране клеток других органов (тонкая кишка, хориоидальное сплетение и др.) дает основание предположить, что и в этих органах фермент принимает участие в транспорте аминокислот. Роль ГГТ печени полностью не выяснена; предположительно фермент связывает молекулы веществ, которые необходимо экскретировать. Биологическая роль фермента связана также с регуляцией уровня глутатиона в тканях. Именно этим можно объяснить высокий уровень глутатиона в плазме крови и моче пациентов с генетически детерминированным отсутствием синтеза ГГТ. Регулируя уровень глутатиона, ГГТ может влиять на синтез белка, что объясняет повышенную удельную активность фермента в тканях с высокой скоростью метаболизма. Это же может быть причиной повышенного уровня фермента в тканях и крови новорожденных.
-
ГГТ содержится в основном в мембране клеток, обладающих высокой секреторной или адсорбционной способностью: эпителиальных клетках, выстилающих желчные пути, печеночных канальцах, проксимальных канальцах нефрона, панкреатической экзокринной ткани и выводных протоках, ворсинчатых клетках тонкой кишки. В порядке снижения удельной активности ГГТ ткани располагаются в следующей последовательности: почки, печень, поджелудочная железа, Щеточная кайма клеток тонкой кишки. Активность ГГТ не обнаружена в скелетных мышцах и миокарде. Клиническое значение определения концентрации ГГТ в сыворотке крови Наиболее частая причина повышения активности ГГТ в сыворотке крови — патология печени. Слабое токсическое воздействие на печень, вызывающее жировую инфильтрацию, прием алкоголя и лекарственных препаратов сопровождаются умеренным увеличением активности ГГТ. Более выраженное повышение активности фермента связано с внепеченочной и внутрипеченочной обструкцией, вторичным вовлечением печени в онкологические процессы организма путем метастазирования. Самая высокая активность ГГТ в сыворотке крови отмечена при закупорке желчного протока или злокачественных опухолях, прямо или опосредованно поражающих печень. При отсутствии желтухи определение ГГТ — чувствительный тест для выявления патологии печени; клиническая чувствительность выше, чем у таких ферментов, как ЩФ и 5-нуклеотидаза. При онкологических заболеваниях нормальная активность ГГТ в сыворотке крови свидетельствует об отсутствии метастазов в печени, тогда как высокая активность ГГТ (в 12 раз и более выше нормы) служит индикатором поражения печени метастазами. При остром вирусном гепатите многократное исследование активности ГГТ позволяет следить за течением болезни: постоянно увеличенная активность ГГТ указывает на развитие хронической формы заболевания. При увеличении активности ЩФ и трудностях определения ее изоферментов полезно определять активность ГГТ для идентификации возможного источника гиперферментемии: активность ГГТ остается в пределах нормы, если увеличение активности ЩФ вызвано костным изоферментом, и увеличена, когда фермент образуется в печени. В педиатрии определение активности ГГТ предпочтительнее, чем определение ЩФ, так как активность ГГТ не меняется с возрастом и полученные результаты легче интерпретировать. Высокая активность ГГТ присутствует в крови людей, злоупотребляющих алкоголем. У 74% алкоголиков, страдающих гистологически подтвержденным поражением печени, увеличение активности ГГТ было постоянным даже в периоды абстиненции. Существуют определенные различия между активностью ГГТ в крови алкоголика и человека, принявшего значительную дозу алкоголя. У первых наступает увеличение активности ГГТ до 140% от нормальных значений с пиком активности через 18 ч, у вторых даже после тяжелого опьянения увеличение активности ГГТ не превышает 15% в течение 12 ч. Развитие инфаркта миокарда сопровождается изменениями активности ферментов сыворотки крови (КК, ЛДГ, ACT) и ГГТ, активность которой после приступа стенокардии остается повышенной в течение длительного времени. Повышение активности ГГТ отмечено у 50% больных стенокардией и у части пациентов с другими заболеваниями (коронарная недостаточность, недостаточность кровообращения). При инфаркте миокарда остаются неясными механизмы увеличения активности ГГТ, поскольку она отсутствует в сердечной мышце. Активность ГГТ в моче выше, чем в сыворотке крови. Присутствующая в моче ГГТ имеет почечное происхождение: фермент выделяется в мочу из разрушенных клеток проксимальных отделов канальцев, которые содержат ГГТ в высокой концентрации.
-
Лактатдегидрогеназа (ЛДГ)
Лактатдегидрогеназа (ЛДГ; L-лактат-НАД-оксидоредуктаза, КФ 1.1.1.27) - цинксодержаший фермент, катализирует обратимую реакцию восстановления пировиноградной кислоты в молочную кислоту при участии НАД-Н2. Фермент в кристаллической форме был получен из мышцы сердца. Подобным же образом были получены кристаллические ферментные препараты из скелетных мышц и печени. При рН 7,0 равновесие реакции смещено в сторону образования лактата, в щелочной среде реакция проходит в обратном направлении. ЛДГ может также реагировать с НАДФ в качестве кофермента, но значительно медленнее, чем с НАД. ЛДГ - тетрамер; два локуса генов кодируют синтез двух олигомеров — М- и Н-субъединиц. М-субъединица синтезируется главным образом в тканях с анаэробным метаболизмом, в то время как Н-субъединица присутствует в тканях с преобладанием аэробных процессов. Молекулярная масса каждой субъединицы составляет 35 кДа, каждого тетрамера - 140 кДа. Полипептидная цепь обеих субъединиц содержит 330 аминокислотных остатков; различия в их последовательности в субъединицах обнаружены на протяжении более чем 25% длины полипептидной цепи. В тетрамерной структуре ЛДГ субъединицы связаны силами ионных и водородных взаимодействий. На каждой субъединице расположен каталитический центр; диссоциация тетрамера на димеры или мономеры приводит к потере ферментативной активности. В цитоплазме клеток и сыворотке крови ЛДГ имеет 5 изоферментов, обозначаемых в соответствии с их подвижностью к аноду в электрическом поле: ЛДГ1 (НННН), ЛДГ2 (НННМ), ЛДГ3, (ННММ), ЛДГ4 (НМММ) и ЛДГ5 (ММММ). ЛДГ, участвует в окислении лактата в пируват в тканях с аэробным типом метаболизма (миокард, мозг, почки, эритроциты, тромбоциты). ЛДГ5 оптимизирована природой для превращения пирувата в лактат в тканях с высоким уровнем гликолиза (скелетные мышцы, печень). Не все изоферменты ЛДГ гомогенны: при электрофоретическом разделении изоферментов ЛДГ сыворотки и эритроцитов в полиакриламидном геле обнаружено расщепление ЛДГ3 на две полосы, которое позволяет предположить синтез двух форм ЛДГ3 в тканях. Наличие молекулярных структур двух форм, подтвержденное в реакции с антисывороткой, объясняют различием пространственного (цис и транс) расположения Н-субъединиц и М-субъединиц в тетрамере. В тканях человека активность ЛДГ на 1 г сухой массы уменьшается в последовательности: почки - скелетная мышца – поджелудочная железа — селезенка — печень — плацента. Изоферменты ЛДГ, и ЛДГ2 преобладают в эритроцитах, лейкоцитах, миокарде, почках, ЛДГ4 и ЛДГ5 — в печени, скелетных мышцах, неопластических тканях, наиболее высокое содержание ЛДГ3 отмечают в лимфоидной ткани, тромбоцитах и опухолях. Свойства изоферментов ЛДГ определены особенностями входящих в них субъединиц. Изоферментам ЛДГ присущи разные кинетические характеристики: рН, при котором они проявляют максимальную активность, сродство к субстратам и кофакторам.
-
Активность ЛДГ в сыворотке крови повышается при многих патологических состояниях, поэтому для дифференциальной диагностики заболеваний более целесообразно исследовать изменения спектра изоферментов ЛДГ. В настоящее время накоплено большое количество данных о распределении изоферментов ЛДГ в тканях и об изменении спектра изоферментов ЛДГ в сыворотке крови при различных заболеваниях. Изоферментный спектр скелетной мускулатуры показывает преобладание ЛДГ5. При мышечной дистрофии отмечены увеличение более подвижных изоферментов ЛДГ и снижение активности ЛДГ5, что характерно и для многих нейромышечных заболеваний. Причиной изменения спектра изоферментов может быть быстрое удаление малоподвижных изоферментов из циркуляции. Активность ЛДГ5 в сыворотке крови — чувствительный индикатор гепатоцеллюлярного поражения, увеличение его активности обычно наблюдают при гепатите, гипоксии печени (включая застой крови в печени вследствие сердечной недостаточности), лекарственной интоксикации, циррозе, опухолях и травме. Активность ЛДГ в сыворотке крови не повышается при хронических заболеваниях почек и уремии, но иногда возрастает после гемодиализа или плазмафереза, что может быть объяснено удалением из крови ингибиторов (мочевина, оксалаты). Общая активность ЛДГ при инфаркте миокарда наиболее значительно повышается в течение первых 2 сут после приступа стенокардии и до исходного уровня понижается медленно, в течение 14-16 дней, эпизодическое повышение ЛДГ можно отметить и в более поздние сроки. Активность ЛДГ подвержена гормональному влиянию. Большие дозы тироксина снижали синтез фермента, при этом в большей мере отмечено ингибирование синтеза субъединицы М. Норадреналин и адреналин вызывают увеличение общей активности ЛДГ с преобладанием активности ЛДГ1, и ЛДГ2. Активность фермента в крови возрастает при действии анаболических стероидов и этанола, а также ряда медикаментозных препаратов — клофибрата, кофеина, сульфаниламидов и др.
-
Наличие осложнений при инфаркте миокарда и сопутствующие заболевания могут изменить спектр ЛДГ и активность ЛДГ. Выявление спектра изоферментов, характерного для инфаркта миокарда, возможно при застое крови в печени и почках вследствие сердечной недостаточности, при ишемическом поражении некоторых органов из-за резкого снижения сердечного выброса. При эмболии легочной артерии, которую в ряде случаев приходится дифференцировать с инфарктом миокарда, увеличение в крови активности ЛДГ2 и ЛДГ3 может быть объяснено выходом ферментов из тромбоцитов, патологией печени, вызванной венозной гипертензией, анемией коркового слоя надпочечников и почек. Поскольку эти нарушения не всегда удается различить, изменение спектра изоферментов ЛДГ интерпретировать непросто. В сыворотке крови тяжелобольных (как правило, в терминальном состоянии) методом ЭФ на ацетате целлюлозы выявляется дополнительная полоса, более близкая к катоду, чем ЛДГ5, названная ЛДГ6. Во всех наблюдениях в тканях печени, скелетных мышцах, почке, селезенке и надпочечниках также отмечено присутствие ЛДГ6; в ряде случаев появление этой фракции носило транзиторный характер, ЛДГ6 не обнаружена в тканях миокарда. Считают, что нет нозологической формы заболевания, для которой характерна ЛДГ6, но есть тяжелые клинические состояния, обусловливающие ее появление, к которым следует отнести выраженный ацидоз, гипотонию и сепсис.
-
.Щелочная фосфатаза (ЩФ)
Щелочная фосфатаза (ЩФ) - фосфогидролазамоноэфироворто-фосфорной кислоты (КФ 3.1.3.1) - гидролизует разные синтетические субстраты при оптимуме рН, равном 10,0; субстрат фермента invivo точно не известен. ЩФ - гликопротеин; по структуре это димер с кажущейся значительной вариацией молекулярной массы фермента в разных тканях. ЩФ - металло-фермент, в состав активного центра фермента входит атом цинка.
-
ЩФ присутствует во всех органах человека; наиболее высокая удельная активность фермента обнаружена в эпителии тонкой кишки, эпителии канальцев почек, остеобластах, гепатоцитах и плаценте- фермент плотно связан с клеточной мембраной гидрофобным карбоксильным концом полипептидной цепи; гидрофобный конец цепи идентичен у всех изоферментов ЩФ. ЩФ прикреплена к плазматической мембране с помощью фосфатидилинозитолгликанового якоря. Молекулы ЩФ на поверхности плазматической мембраны располагаются неравномерно Клиническое значение определения активности ЩФ. Повышение активности ЩФ в сыворотке крови не всегда позволяет с достаточной степенью достоверности составить представление об органотопической патологии. В клинической биохимии активность ЩФ наиболее часто используют в диагностике патологии гепатобилиарной системы и костной ткани. Активность ЩФ сыворотки крови часто повышена при обструктивных заболеваниях печени, холестазе, гепатите, явлениях гепатотоксичности, болезни Педжета, остеомаляции, новообразованиях, вовлекших в патологический процесс печень и костную ткань. Низкая или даже неопределяемая активность ЩФ отмечена при гепатолентикулярной дегенерации. Механизм этого феномена неясен, предполагают, что ион меди конкурирует с цинком за место в активном центре ЩФ, что ведет к резкому падению активности фермента. Применение гиполипидемических препаратов, в частности клофибрата, также ингибирует фермент. У недоношенных детей с целью ранней диагностики рахита рекомендовано определять активность ЩФ. Исследование активности ЩФ у больных с синдромом гипофосфатазии указывает на важную роль ЩФ в процессах минерализации костной ткани. Синдром гипофосфатазии - врожденное заболевание костной ткани, характеризующееся избирательной недостаточностью синтеза ЩФ. У пациентов с подобной патологией в тканях и сыворотке крови значительно снижена активность печеночного, костного и почечного изоферментов ЩФ при нормальной активности плацентарного и кишечного изоферментов. Другая особенность заболевания - накопление в крови и моче фосфорсодержащих комплексов, служащих эндогенным субстратом ЩФ. К ним относят фосфоэтаноламин, пирофосфат, П-5-Ф и т. д. Заболевание вызвано точечными мутациями гена, кодирующего синтез фермента.
-
Повышение активности ЩФ происходит не только в условиях активного роста костной ткани, но и при ее разрушении - остеопорозе и последующей остеомаляции. При тяжелом остеопорозе и остеомаляции активность ЩФ в сыворотке крови может быть нормальной или слабо повышенной (в 2—3 раза). Остеомаляция, верифицированная гистологически, может протекать при нормальной активности ЩФ. Активность ЩФ в сыворотке крови может быть повышена при остеомиодистрофии, развивающейся как осложнение длительного гемодиализа. При введении циклоспорина после трансплантации повышенная активность ЩФ в большей мере зависит от токсического влияния препарата на гепатоциты и в меньшей мере связана с патологией остеобластов. У пациентов с гиперпаратиреозом активность ЩФ сыворотки крови обычно в пределах нормы, но при развитии остеопороза, особенно остеонекроза, может быть значительно увеличена. Исследование активности ЩФ оказывается полезным и в дифференциальной диагностике внутри- и внепеченочного холестаза. В случае экстрагепатобилиарной обструкции при камнях желчного протока и желчного пузыря, а также при новообразованиях в этих органах активность ЩФ повышается в 10 раз и более. Внутрипеченочная обструкция желчных путей при гепатите также сопровождается повышением активности ЩФ, но степень гиперферментемии не превышает 2—3-кратного значения. Острые некротические изменения гепатоцитов могут не сопровождаться повышением активности ЩФ до тех пор, пока в патологический процесс не будут вовлечены желчные канальцы и не произойдет задержка желчеотделения. В то же время далеко не во всех случаях поражения паренхимы печени существует четкая корреляционная зависимость между активностью ЩФ сыворотки крови и содержанием в ней билирубина. В начале развития внутрипеченочного холестаза увеличение активности ЩФ может быть следствием повышения синтеза белка в гепатоцитах; последующее повышение активности ЩФ в сыворотке крови, особенно в форме макро-ЩФ, связано с нарушением целостности клеток желчных канальцев.
-
Энзимотерапия
Энзимотерапия, т.е. использование ферментов и модуляторов (активаторов и ингибиторов) действия ферментов в качестве лекарственных средств. До сих пор работы в этом направлении почти не выходят за рамки эксперимента. Исключение составляют некоторые протеиназы: пепсин, трипсин, химотрипсин и их смеси (абомин, химопсин), которые применяют для лечения ряда болезней пищеварительного тракта. Помимо протеиназ, ряд других ферментов, в частности РНКаза, ДНКаза, гиалуронидаза, коллагеназы, эластазы, отдельно или в смеси с протеиназами используются при ожогах, для обработки ран, воспалительных очагов, устранения отеков, гематом, келоидных рубцов, кавернозных процессов при туберкулезе легких и др. Ферменты применяются также для лечения сердечно-сосудистых заболеваний, растворения сгустков крови. В нашей стране разработан первый в мире препарат иммобилизованной стрептокиназы, рекомендованный для лечения инфаркта миокарда. Калликреины-ферменты кининовой системы используются для снижения кровяного давления. Важной и многообещающей областью энзимотерапии является применение ингибиторов ферментов. Так, естественные ингибиторы протеиназ (α1-трипсин, α2-химотрипсин, α-макроглобулин) нашли применение в терапии острых панкреатитов, артритов, аллергических заболеваний, при которых отмечается активация протеолиза и фибринолиза, сопровождающаяся образованием вазоактивных кининов. В последнее время получило признание применение в онкологической клинике ферментов бактериальной природы в качестве лекарственных средств.
-
СПАСИБО ЗА ВНИМАНИЯ.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.