Презентация на тему "Временные ряды" 11 класс

Презентация: Временные ряды
Включить эффекты
1 из 15
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для 11 класса на тему "Временные ряды" по обществознанию. Состоит из 15 слайдов. Размер файла 0.47 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

Содержание

  • Презентация: Временные ряды
    Слайд 1

    Временные ряды

    Эконометрическую модель можно построить, используя два типа исходных данных: данные, характеризующие совокупность различных объектов в определенный момент (период) времени; данные, характеризующие один объект за ряд последовательных моментов (периодов) времени. Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные по данным второго типа, называются моделями временных рядов. Временной ряд (динамический ряд, ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени.

  • Слайд 2

    Три составляющие временного ряда

    Долговременная тенденция Т Периодические (циклические или сезонные) колебания S Случайная компонента Е

  • Слайд 3

    Модели временного ряда:

    Основная задача эконометрического исследования временного ряда: выявление и количественное выражение его компонент (тенденции, периодичности, случайной компоненты) в целях их использования для прогнозирования будущих значений ряда. 1) аддитивная 2) мультипликативная 3) смешанная

  • Слайд 4

    Автокорреляция уровней временного ряда –

    это корреляционная зависимость между последовательными уровнями временного ряда. Измеряется с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями ряда, сдвинутыми на несколько шагов назад во времени:

  • Слайд 5

    τ – величина сдвига во времени, или лаг

    Например, лаг τ=1 означает, что ряд сдвинут на один период (момент) назад и т.д. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. τ=1 => τ=2 =>

  • Слайд 6

    Свойства коэффициента автокорреляции:

    характеризует теснотутолько линейной связи текущего и предыдущего уровней ряда, поэтому по данному коэффициенту можно судить о наличии линейной или близкой к линейной тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию, коэффициент автокорреляции может приближаться к нулю; по знаку коэффициента автокорреляции нельзя судить о возрастающей или убывающей тенденции в уровнях ряда.

  • Слайд 7

    Автокорреляционная функция временного ряда (АКФ) – это последовательность коэффициентов автокорреляции первого, второго и т.д. порядков. Коррелограмма – это график зависимости значений АКФ от величины лага.

  • Слайд 8

    Моделирование тенденции временного ряда

    Аналитическое выравнивание – это построение аналитической функции, характеризующей зависимость уровней ряда от времени, т.е. построение тренда: линейный тренд экспоненциальный тренд гипербола тренд в форме степенной функции

  • Слайд 9

    Для определения вида тенденции применяются следующие методы:

    –качественный анализ изучаемого процесса; – построение и визуальный анализ графика зависимости уровней ряда от времени; – расчет и анализ показателей динамики временного ряда (абсолютные приросты, темпы роста и др.); – метод перебора, при котором строятся тренды различного вида с последующим выбором наилучшего на основании значения скорректированного коэффициента детерминации.

  • Слайд 10

    Выбор вида тенденции на основе качественного анализа

    Процессы с монотонным характером развития и отсутствием пределов роста Функции: линейная, параболическая, экспоненциальная, степенная. Процессы, имеющие предел роста (падения), так называемые процессы с «насыщением» Функции: гиперболическая, модифицированная экспонента. S-образные процессы Функция: логистическая.

  • Слайд 11

    Моделирование периодических колебаний

    Построение аддитивной и мультипликативной моделей сводится к расчету значений T, S, E для каждого уровня ряда. Процесс построения модели включает в себя следующие этапы: 1. Выравнивание исходного ряда методом скользящей средней. 2. Расчет значений периодической компоненты S. 3. Устранение периодической компоненты из исходных уровней ряда и получение выравненных данных (Т+Е) в аддитивной или (Т•Е) в мультипликативной модели. 4. Аналитическое выравнивание уровней ряда и расчет значений Т с использованием полученного уравнения тренда. 5. Расчет полученных по модели значений (Т+S) или (Т•S). 6. Расчет абсолютных и/или относительных ошибок.

  • Слайд 12

    1 этап. Выравнивание исходного ряда методом скользящей средней

  • Слайд 13

    2 этап. Расчет значений периодической компоненты S

  • Слайд 14

    3 этап. Устранение периодической компоненты из исходных уровней ряда и получение выравненных данных (Т+Е)

  • Слайд 15

    4 этап. Аналитическое выравнивание уровней ряда и расчет значений Т с использованием полученного уравнения тренда

Посмотреть все слайды

Сообщить об ошибке