Содержание
-
Построение сечений: метод следов
Астрахань – 2012 г.
-
Существует три основных метода построения сечений многогранников: Метод следов. Метод вспомогательных сечений. Комбинированный метод.
-
Метод следов заключается в построении следов секущей плоскости на плоскость каждой грани многогранника. Построение сечения многогранника методом следов обычно начинают с построения так называемого основного следа секущей плоскости, т.е. следа секущей плоскости на плоскости основания многогранника.
-
Задача 1.
Дана призма ABCDA1B1C1D1. Построить сечение призмы плоскостью, проходящей через точки P, Q, R. P Q R
-
Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.
-
Прямая PQ, которая принадлежит сечению, пересекается с прямой АВ в точке S1.
-
Аналогично получаем точку S2 пересечением прямых QR и BC.
-
Прямая S1S2 - след секущей плоскости на плоскость нижнего основания призмы.
-
Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Аналогично получаем TU и RT. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D.
-
PQRTU – искомое сечение.
-
Задача 2.
Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки M, N, P.
-
Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.
-
Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.
-
Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х.
-
Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN.
-
Эта прямая пересечет сторону В1С1 в точке Y. Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP.
-
Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.
-
Задача 3.
На ребрах АА' и В'С' призмы АВСА'В'С' зададим соответственно точку P и Q. Построим сечение призмы плоскостью (PQR), точку R которой зададим в грани ВСВ'С'.
-
Так как точки Q и R лежат в плоскости (ВСС'), то в этой плоскости лежит прямая QR. Проведем ее. Это след плоскости (PQR) на плоскость(ВСС').
-
Находим точки В'' и С'' , в которых прямая QR пересекает соответственно прямые ВВ' и СС'. Точки В'' и С'' - это следы плоскости (PQR) соответственно на прямых ВВ' и СС'.
-
Так как точки В'' и Р лежат в плоскости (АВВ'), то прямая В''Р лежит в этой плоскости. Проведем ее. Отрезок В''Р - след плоскости (PQR) на грани АВВ'А'.
-
Так как точки Р и С лежат в плоскости (АСС'), то прямая РС'' лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (АСС').
-
Находим точку V, в которой прямая РС'' пересекает ребро А'С'. Это след плоскости (PQR) на ребре А'С'.
-
Так как точки Q и V лежат в плоскости (А'В'С'), то прямая QV лежит в этой плоскости. Проведем прямую QV. Отрезок QV - след плоскости (PQR) на грани АВС. Итак, мы получили многоугольник QB''PV - искомое сечение.
-
Задача 4.
На ребрах АА' и В'С' призмы АВСА'В'С' зададим соответственно точку P и Q. Построим сечение призмы плоскостью (PQR), точку R которой зададим в грани А'В'С‘.
-
Так как точки Q и R лежат в плоскости (А'В'С'), то в этой плоскости лежит прямая QR. Проведем ее. Это след плоскости (PQR) на плоскости (А'В'С').
-
Находим точки D' и Е', в которых прямая QR пересекает соответственно прямые А'В' и А'С'. Так как точка D' лежит на ребре А'В', отрезок Е’D' - след плоскости (PQR) на грани А'В'С'.
-
Так как точки D' и P лежат в плоскости (АВВ'), то прямая D'P лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (АВВ'), а отрезок D'P - след плоскости (PQR) на грани АВВ'А'.
-
Так как точки Р и Е' лежат в плоскости (АСС'), то в этой плоскости лежит прямая РЕ'. Проведем ее. Это след плоскости (PQR) на плоскости (АСС').
-
Находим точку К. Так как точка К лежит на ребре СС', то отрезок РК - это след плоскости (PQR) на грани АСС'А'.
-
Так как точки Q и К лежат в плоскости (ВСС'), то прямая QК лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (ВСС'), а отрезок QК- след плоскости (PQR) на грани ВСС'В'. Итак, мы получили многоугольник QD'РК - это и есть искомое сечение.
-
Спасибо за внимание!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.