Презентация на тему "U-критерийМанна – Уитни"

Презентация: U-критерийМанна – Уитни
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

"U-критерийМанна – Уитни" состоит из 25 слайдов: лучшая powerpoint презентация на эту тему находится здесь! Вам понравилось? Оцените материал! Загружена в 2019 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: U-критерийМанна – Уитни
    Слайд 1

    U-критерийМанна – Уитни

    Используется для оценки различий между двумя несвязными выборками по уровню количественно измеренного признака Позволяет выявлять различия в значении признака между малыми выборками Гипотезы (для случая, когда уровень первой группы на первый взгляд выше) Н0: «Уровень признака в группе 2 не ниже уровня признака в группе 1» Н1: «Уровень признака в группе 2 ниже уровня признака в группе 1»

  • Слайд 2

    Алгоритм U-теста: 1) обе выборки соединяются в единую выборку. При этом запоминается, к какой выборке относится каждый элемент массива 2) общая выборка ранжируется по возрастанию Правила ранжирования: меньшему значению начисляется меньший ранг наименьшему значению начисляется ранг 1 наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений n1+n2

  • Слайд 3

    Правила ранжирования: в случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение тех рангов, которые они получили бы, если бы они не были равны общая сумма рангов должна совпадать с расчетной, которая определяется по формуле где Ri– ранги, N=n1+n2 – общее количество ранжируемых наблюдений

  • Слайд 4

    Алгоритм U-теста: 3) разбить единую выборку на прежние две выборки 4) подсчитать сумму рангов отдельно по каждой выборке. Проверить, совпадает ли общая сумма рангов с расчетной

  • Слайд 5

    Алгоритм U-теста: 5) найти эмпирическое значение критерия. Для этого подсчитать: где n1 – объем первой выборки, n2 – объем второй выборки, R1 и R2 –ранговые суммы групп

  • Слайд 6

    Алгоритм U-теста: 5) найти критическое значение критерия Uкритпо таблицам

  • Слайд 7

    Алгоритм U-теста: 6) сравнить эмпирическое и критическое значение критерия Если Uэмп>Uкрит,то нулевая гипотеза принимается Если U эмпUкрит,то нулевая гипотеза отклоняется

  • Слайд 8

    Ограничения применимости критерия в каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было два значения, но во второй тогда не менее пяти. в каждой выборке должно быть не более 60 наблюдений (ограничение не является строгим для случая компьютерной обработки)

  • Слайд 9

    Пример Результаты обследования студентов физического и психологического факультетов Ленинградского университета: Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?

  • Слайд 10

    Проверка гипотез в Excel при помощи U-критерия Манна – Уитни

    1) Занести показатели в первый и второй столбецНайти объем каждой выборки

  • Слайд 11

    2) Выполнить операцию ранжирования =РАНГ(A3;$A$3:$B$16;1)+(СЧЁТЕСЛИ($A$3:$B$16;A3)-1)/2

  • Слайд 12

    3) Найти ранговые суммы каждой выборки

  • Слайд 13

    Так как R1=165

  • Слайд 14

    5) Подсчитать значение U-критерия по каждой выборке

  • Слайд 15

    6) Найти эмпирическое значение критерия Uэмп

  • Слайд 16

    7) По таблице найти критическое значение критерия Uкрит

  • Слайд 17

    8) Сравнить эмпирическое Uэмп и критическое Uкрит значение критерия Так как то нулевая гипотеза H0 принимается на уровне значимости α=0,05 Вывод: статистически значимое превосходство группы студентов-психологов над группой студентов-физиков по уровню невербального интеллекта не обнаружено

  • Слайд 18

    Примечание Если нет возможности найти критическое значение критерия Uкрит, то нужно подсчитать по эмпирическому значению критерия уровень Uэмп значимости p Если уровень значимости p≤α, то нулевая гипотеза H0 принимается Если уровень значимости p>α, то нулевая гипотеза H0 отклоняется

  • Слайд 19

    Примечание =2*(1-НОРМСТРАСП((A19*B19/2-J19)/КОРЕНЬ(A19*B19/12*(A19+B19+1))))

  • Слайд 20

    Проверка гипотез в STATISTICA при помощи U-критерия Манна – Уитни

    1) Занести все показатели в один столбец Промаркировать показатели:1 – для первой выборки, 2 – для второй выборки

  • Слайд 21

    2) Выполнить последовательность командСтатистика  Непараметрические данные 3) В окне NonparametricStatisticsвыбратьComparing two independent samples (groups) и нажать OK

  • Слайд 22

    4) Нажать кнопку Variableи выбрать в левом окне (зависимая переменная) – первую переменную, в правом (группированная переменная) – вторую переменную и нажать OK

  • Слайд 23

    5) Нажать на одну из кнопок Mann-Whitney U test

  • Слайд 24

    6) Результаты Если значения в этой таблице будут отмечены красным цветом, это будет означать, что нулевая гипотеза H0 отклоняется Так как в данном случае нет отмеченных красным результатов, то нулевая гипотеза H0 принимается на уровне значимости α=0,05

  • Слайд 25

    7)Вывод: статистически значимое превосходство группы студентов-психологов над группой студентов-физиков по уровню невербального интеллекта не обнаружено

Посмотреть все слайды

Сообщить об ошибке