Презентация на тему "Нейрон. Его свойства и функции"

Включить эффекты
1 из 26
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5

Рецензии

Добавить свою рецензию

Аннотация к презентации

Презентационная работа по биологии на тему: "Нейрон. Его свойства и функции", созданная студенткой. Автор подробно описывает строение нейрона, их функции, знакомит с классификацией и принципом работы от роста и развития до отмирания.

Краткое содержание

  • Нейрон
  • Строение
  • Тело нервной клетки
  • Аксоны и дендриты
  • Синапс
  • Классификация
  • Структурная классификация
  • Функциональная классификация
  • Развитие и рост нейрона

Содержание

  • Слайд 1

    Нейрон. Его свойства и функции

    Факультет психологии П С Д – Д С- 2 Филиппова Ольга

    Москва

  • Слайд 2

     

    Нейрон (от др.-греч. νεῦρον — волокно, нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

  • Слайд 3

     

    • Сложность и многообразие функций нервной системы определяются взаимодействием Между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих
    • Электрический заряд, который движется вдоль нейрона.

  • Слайд 4

    Строение

  • Слайд 5

     

    Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов(билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране Находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы. тело

    Тело клетки

  • Слайд 6

     

    • Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также изотростков.
    • Выделяют два вида отростков:дендриты и аксоны. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).
    • Цитоскелет нейрона состоит из фибриллразного диаметра: дендрит аксон

  • Слайд 7

     

    • Микротрубочки (Д = 20-30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний.
    • Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ.
    • Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.
    • В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

  • Слайд 8

    Аксоны и дендриты

    Аксон— обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

    • аксон
    • дендриты

  • Слайд 9

     

    Дендриты делятся дихотомически, аксоны же дают коллатерали.

    В узлах ветвления обычно сосредоточены митохондрии.

    - Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь.

    Местом генерации возбуждения у большинства Нейронов является аксонный холмик — образование в месте отхождения аксона от тела.

    У всех нейронов эта зона называется триггерной.

  • Слайд 10

    Синапс

    Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.

    Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

    Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

    Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

  • Слайд 11

     

  • Слайд 12

     

  • Слайд 13

    Структурная классификация

    • Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
    • Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
    • Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

  • Слайд 14

     

    • Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.
    • Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

  • Слайд 15

    Функциональная классификация

    • Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
    • Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.
    • Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.
    • Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

  • Слайд 16

    Развитие и рост нейрона

    Нейрон развивается из небольшой клетки предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться

  • Слайд 17

     

    Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона

  • Слайд 18

    Основные свойства нейронов

    Раздражимость — способность нервной клетки отвечать на различные раздражения биохимическими изменениями, сопровождающимися нарушением ионного равновесия и деполяризацией электрических зарядов на мембранах клетки вместе раздражения. Раздражимость присуща всем клеткам, и особенно нервным, связанным с чувствительным восприятием запаховых, звуковых, световых и других раздражителей. Раздражимость — пусковой механизм проявления другого свойства — возбудимости.

  • Слайд 19

     

    Возбудимость — способность отдельных частей нервной клетки генерировать электрохимические импульсы, т. е. отвечать на раздражение возбуждением. Для перехода нервной клетки в состояние возбуждения необходимо, чтобы сила действующего раздражителя достигла критического предела — пороговой величины. Способность нейрона отвечать возбуждением на наименьшую силу раздражителя называется нижним порогом возбудимости. Чем чувствительнее нервная клетка к раздражению, тем меньше порог возбудимости, и, следовательно, даже самый слабый раздражитель может вызвать возбуждение. Величина возбуждения нейрона зависит от силы раздражителя и возрастает по закону силовых отношений до определенного предела — верхнего порога возбудимости.

  • Слайд 20

     

    • Применение раздражителей сверхпороговой силы создает в нейроне запредельное торможение, которое охраняет нервную клетку от перевозбуждения Одиночное раздражение обычно вызывает серию импульсов определенной силы, продолжительности и частоты. В разных нервных клетках частота импульсов различная — от 100 до 1000 в секунду. Сила и продолжительность импульсов возбуждения зависит от характера раздражения.

  • Слайд 21

     

    • Проводимость — способность нейрона проводить импульсы возбуждения с определенной скоростью, в неизменном ритме и силе. Возбуждение по нервному волокну может распространяться в обе стороны от раздражаемого участка. В разных нервных клетках скорость проведения возбуждения неодинакова и зависит от физиологического состояния нейрона и толщины волокна. В чувствительных нейронах возбуждение распространяется со скоростью 100–120 метров в секунду, в двигательных — 60–100, а в вегетативной нервной системе — 5–7.
    • Лабильность (подвижность) — способность нервной клетки принимать и передавать максимальное число импульсов за единицу времени без искажения. Подвижность двигательных нейронов не более 500 импульсов в секунду. Лабильность обеспечивает направленное распределение и проведение импульсов возбуждения нужной частоты по определенным нервным путям. В процессе роста и развития организма, а также при систематической тренировке, лабильность увеличивается и обеспечивает динамичность нервной системы, при утомлении и старении — уменьшается.

  • Слайд 22

     

    • Инертность — способность нервной клетки накапливать и хранить в себе следы возбуждения и торможения. Полученная информация откладывается в дендритах, соме клетки, хромосомах ядра в виде биохимических изменений ДНК и РНК плазмы. Это свойство нейронов обеспечивает память организма, которая имеет решающее значение в процессе обучения животных.
    • Утомляемость — естественный процесс снижения работоспособности клетки при длительном возбуждении или торможении. Проявляется в виде уменьшения силы возбуждения, замедления частоты ритма импульсов и скорости их проведения. Отдых нервных клеток или смена нервной деятельности снимает утомление, и все свойства восстанавливаются.
    • Торможение — процесс, обратный возбуждению. Заключается в ослаблении, остановке или предупреждении возникновения возбуждения. Торможение — активный процесс, распространяясь по нервным клеткам, он обеспечивает согласованную работу отдельных органов и всего организма в целом.
    • Регенерация — способность нервной клетки восстанавливать утраченные или поврежденные отростки путем прорастания. Нервные клетки не размножаются, погибшие нейроны не восстанавливаются. Волокна нервной клетки способны прорастать, если сохранилось тело клетки.

  • Слайд 23

    Основные функции нейронов

    • Рецепторная функция обеспечивает восприятие определенных раздражителей из внешней и внутренней среды организма.
    • Рецепторные клетки — это видоизмененные нейроны, воспринимающие определенный вид энергии
    • Поступающее из внешней или внутренней среды. Рецепторы, воспринимающие раздражения из внешней средой называют экстерорецепторами, из внутренней среды — интерорецепторами.

  • Слайд 24

     

    • Сенсорная функция чувствительных нейронов обеспечивает анализ воспринятых раздражений, формирование определенных ощущений и четкую дифференцировку многочисленных раздражителей, воздействующих из внешней и внутренней среды.
    • Информационная функция промежуточных нейронов обеспечивает накопление, сохранение и выдачу информации, поступившей из внешней и внутренней среды.
    • Информация в нейронах кодируется как память и в нужных случаях выдается в виде слабых импульсов возбуждения.

  • Слайд 25

     

    • Моторная функция двигательных нейронов обеспечивает формирование и передачу импульсов возбуждения определенной силы и частоты к соответствующим органам движения или другим исполнительным органам и тканям.
    • Таким образом, основными функциями нейронов являются: восприятие раздражений, их переработка и передача нервных возбуждений на другие нейроны или рабочие органы. Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела и органами. В нейронах происходят сложнейшие процессы обработки и запоминания информации. С помощью нейронов формируются рефлексы.

  • Слайд 26

    Список литературы

    • Немечек С. и др. Введение в нейробиологию, Avicennum: Прага, 1978, 400 c.
    • Физиология человека под редакцией В.М.Покровского, Г.Ф.Коротько
    • Анисимов В.Н. - Молекулярные и физиологические механизмы старения

Посмотреть все слайды
Презентация будет доступна через 15 секунд