Презентация на тему "Строение человеческого мозга и высшая нервная деятельность"

Презентация: Строение человеческого мозга и высшая нервная деятельность
1 из 28
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн на тему "Строение человеческого мозга и высшая нервная деятельность" по Биологии. Презентация состоит из 28 слайдов. Для студентов. Материал добавлен в 2017 году. Средняя оценка: 3.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.16 Мб.

Содержание

  • Презентация: Строение человеческого мозга и высшая нервная деятельность
    Слайд 1

    Строение человеческого мозга и высшая нервная деятельность. Центральную нервную систему составляют спинной и головной мозг. Основными функциями центральной нервной системы являются: регуляция деятельности всех тканей и органов и объединение их в единое целое; обеспечение приспособления организма к условиям внешней среды (организация адекватного поведения соответственно потребностям организма). У высших животных и человека ведущим отделом центральной нервной системы является кора больших полушарий, которая управляет также наиболее сложными функциями в жизнедеятельности человека — психическими процессами (сознание, мышление, память и др.).

  • Слайд 2

    Основным структурным элементом нервной системы является нервная клетка, или нейрон. Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения. Нейроны разделяются на три основных типа: афферентные, эфферентные промежуточные

  • Слайд 3

    Афферентный нейрон имеет ложноуниполярную  форму, т. е. оба его отростка выходят из одного полюса клетки. К афферентным нейронам относят также нервные клетки, аксоны которых составляют восходящие пути спинного и головного мозга. Эфферентныенейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из центральной нервной системы к рабочим органам. Для эфферентных нейронов характерны разветвленная сеть дендритов и один длинный отросток — аксон. Промежуточные нейроны (интернейроны, или вставочные) — это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении и в вертикальном. Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов

  • Слайд 4

    Функциональное значение различных структурных элементов нервной клетки. Нервная клетка состоит из тела, или сомы и различных отростков. Многочисленные древовидно разветвленные отростки дендриты служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон, который передает нервные импульсы дальше — другой нервной клетке или рабочему органу. Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.

  • Слайд 5

    Среди нейронов встречаются самые крупные клеточные элементы организма. Размеры их поперечника колеблются от6—7 мкм (мелкие зернистые клетки мозжечка) до 70 мкм (моторные нейроны головного и спинного мозга). Плотность их расположения в некоторых отделах центральной нервной системы очень велика. Например, в коре больших полушарий человека на 1 мм3 приходится почти 40 тыс. нейронов. Тела и дендриты нейронов коры мозга занимают в целом примерно половину её объема. Нервная клетка покрыта плазматической мембраной - полупроницаемой клеточной оболочкой, которая обеспечивает регуляцию концентрации ионов внутри клетки и ее обмен с окружающей средой. При возбуждении проницаемость клеточной мембраны изменяется, что играет важнейшую роль в возникновении потенциала действия и передаче нервных импульсов.

  • Слайд 6

    Обмен веществ в нейроне. Основной особенностью обмена веществ в нейроне является высокая скорость обмена и преобладание аэробных процессов. Потребность мозга в кислороде очень велика. Потребление кислорода мозгом достигает в состоянии покоя у взрослых людей 25% от общего его потребления организмом, а у маленьких детей — 50%. Даже кратковременное нарушение доставки кислорода кровью может вызвать необратимые изменения в деятельности нервных клеток: в спинном мозгу — через 20 — 30 мин., в стволе головного мозга — через 15 — 20 мин., а в коре больших полушарий — уже через 5 — 6 мин. Энерготраты мозга составляют 1/6 — 1/8 суточных затрат организма человека. Основным источником энергии для мозговой ткани является глюкоза. Мозг человека требует для обмена около 115 г глюкозы в сутки. Содержание ее в клетках мозга очень мало, и она постоянно черпается из крови. Деятельное состояние нейронов сопровождается трофическими процессами - усилением в них синтеза белков.

  • Слайд 7

    Кровоснабжение нервных клеток. Кровь протекает через мозг в 5—7 раз скорее, чем через покоящиеся мышцы.Мозговая ткань обильно снабжена кровеносными сосудами. Наиболее густая сеть их находится в коре больших полушарий (занимает около 10% объема коры). Каждый крупный нейрон имеет несколько собственных капилляров у основания тела клетки, а группы мелких клеток окутаны общей капиллярной сетью. При активном состоянии нервной клетки она нуждается в усиленном поступлении через кровь кислорода и питательных веществ. Возможность перераспределения крови в мозгу обеспечена наличием в основаниях артериальных ветвей крупных пучков гладких мышечных волокон — сфинктерных валиков. Эти валики могут уменьшать или увеличивать диаметр сосудов и тем самым производить раздельную регуляцию кровоснабжения разных участков мозга.

  • Слайд 8

    Глиальные клетки (клетки глии) В процессах питания нервных клеток и их обмене веществ участвуют также окружающие нейрон клетки глии (глиальные клетки, или нейроглия). Эти клетки заполняют в мозгу все пространство между нейронами. В коре больших полушарий их примерно в 5 раз больше, чем нервных клеток. Капилляры в центральной нервной системе плотно окружены клетками глии, которые покрывают сосуд полностью или оставляют небольшую часть (15%) свободной

  • Слайд 9

    Основные функции нервной клетки Основными функциями нервной клетки являются восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).

  • Слайд 10

    Особенности осуществления этих функций позволяют разделить все нейроны центральной нервной системы на 2 большие группы: клетки, передающие информацию на большие расстояния. Это крупные, афферентные и эфферентные нейроны, имеющие на своем теле и отростках большое количество синапсов, как возбуждающих, так и тормозящих, и способные к сложным процессам переработки поступающих через них влияний; 2) клетки, обеспечивающие межнейронные связи в пределах ограниченных нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.). Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синаптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.

  • Слайд 11

    Все раздражения, поступающие в нервную систему, передаются на нейрон через определенные участки его мембраны, находящиеся в области синаптических контактов. В большинстве нервных клеток эта передача осуществляется химическим путем с помощью медиаторов. Ответом нейронов на внешнее раздражение является изменение величины, мембранного потенциала. Воспринимающая функция нейрона.

  • Слайд 12

    Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия нервной клетки в разнообразных реакциях организма. Наибольшее число (до 50%) синапсов находится на дендритах. Эффекты, возникающие при активации синапса, могут быть возбуждающими или тормозящими. Это зависит от качества медиатора и свойств постсинаптической мембраны. Возбуждающие нейроны выделяют возбуждающий медиатор, а тормозные — тормозной. Кроме того, один и тот же медиатор может оказывать различное воздействие в разных органах (например ацетилхолин возбуждает скелетные мышечные волокна и тормозит сердечные).

  • Слайд 13

    Физиологические показатели функционального состояния нейрона. Величина мембранного потенциала является основным параметром, который определяет значения важнейших показателей функционального состояния нейрона — его возбудимость и лабильность.

  • Слайд 14

    Возбудимость нейрона. Возбудимость нейрона — это его способность отвечать на синаптическое воздействие потенциалом действия. Она зависит от соотношения двух параметров - мембранного потенциала и критического уровня деполяризации. В нормальных условиях деятельности критический уровень деполяризации нейрона относительно постоянный, поэтому возбудимость нейрона определяется в основном величиной мембранного потенциала.

  • Слайд 15

    Лабильность нейрона - это скорость протекания элементарных реакций, лежащих в основе его возбуждения. Наиболее удобная мера лабильности нейрона - максимальная скорость протекания ПД. В качестве меры лабильности используют также максимальную частоту импульсов, воспроизводимых нейроном без трансформации в единицу времени, или оптимальную, наиболее устойчивую, частоту импульсов (текущая лабильность). Разные по функциям и величине нервные клетки обладают различными величинами лабильности. Даже в пределах одного нейрона лабильность разных его структур (дендритов, сомы, начального сегмента и аксона) резко различается. Величина лабильности нейрона определяется уровнем его мембранного потенциала. Лабильность нейрона.

  • Слайд 16

    Системы нервных клеток Диффузная нервная сеть и процесс централизации Соматотопическое представительство функций. Механизмы взаимодействия нервных клеток.

  • Слайд 17

    У простейших одноклеточных животных одна клетка осуществляет разнообразные функции. Передвижение этих животных обеспечивается либо выпячиванием части клетки (ложноножки) и переливанием в нее содержимого клетки (амебоидное движение, характерное и для белых клеток крови человека), либо с помощью специальных образований — ресничек или жгутиков. Усложнение деятельности организма привело к разделению функций различных клеток — их специализации. Одни из них приобрели способность к сокращению (мышечные клетки), другие — к восприятию внешних и внутренних раздражении, переработке поступающей информации и передаче управляющих сигналов на органы движения и другие органы тела (нервные клетки). Наиболее простая форма организации нервной системы — диффузная нервная сеть низших беспозвоночных животных (губок, гидр, актиний и медуз). Нейроны такой сети имеют многочисленные взаимные связи, по которым возбуждение распространяется диффузно, по всем направлениям. Диффузная нервная сеть и процесс централизации.

  • Слайд 18

    Более сложной формой является сегментарная организация нервной системы у высших беспозвоночных животных (червей, насекомых). Тело их состоит из имеющих одинаковое строение участков — сегментов, иннервация которых осуществляется расположенными в этих же сегментах нервными клетками. С усложнением поведенческих реакций происходит развитие у позвоночных животных головного конца нервной системы - энцефалона. В нем сосредоточиваются группы нервных клеток, управляющих важнейшими функциями, — нервные центры. При этом утрачивается автономность отдельных сегментов и все большая часть функций передается вышележащим отделам нервной системы. Этот процесс получил название энцефализации (централизация) функций. С формированиемкоры больших полушарий происходит подчинениевсех других отделов нервной системы, т. е. процесс кортикализации

  • Слайд 19

    Системы нейронов, образующих восходящие пути от рецепторов или нисходящие пути к рабочим органам, расположены в определенном порядке — по типу проекции «точку в точку». Так, каждый участок воспринимающей поверхности глаза (сетчатой оболочки с фоторецепторами) передает свои сигналы определенному участку в зрительной области коры больших полушарий. Эти чувствительные корковые центры расположены таким образом, что они как бы образуют экран, отражающий расположение фоторецепторов на периферии. Следовательно, наш мозг получает объективную информацию о пространственных особенностях внешнего мира. Определенная пространственная организация в нервной системе сигналов от различных органов чувств (от зрительных, слуховых, мышечных, тактильных и других рецепторов) позволяет человеку иметь необходимое представление о схеме пространства. Соматопическое представительство функций.

  • Слайд 20

    Таким же образом в мозгу обеспечивается представление о схеме тела. Порядок размещения афферентных волокон в проводящих путях и локализация нервных центров в проекционных областях разных этажей нервной системы соответствуют порядку размещения участков кожи и скелетных мышц в теле. Этому принципу отвечает представительство моторных функций в различных этажах нервной системы. Так, например, в самой верхней части передней центральной извилины коры больших полушарий находятся центры, посылающие импульсы к мышцам нижних конечностей, несколько ниже — моторные центры мышц туловища, еще ниже—моторное представительство мышц верхних конечностей и, наконец, центры мышц шеи и головы. Таков же порядок расположения этих центров в моторных ядрах нижележащих этажей нервной системы (например, в красном ядре среднего мозга).

  • Слайд 21

    Нервные клетки функционируют в тесном взаимодействии друг с другом. Все взаимодействия между нервными клетками осуществляются благодаря двум механизмам: влияниям электрических полей нервных клеток (электротоническим влияниям) и влияниям нервных импульсов. В передаче нервных импульсов от одного нейрона к другому большое значение имеют синапсы. Особенно много их в высших отделах нервной системы и у нейронов с наиболее сложными функциями. Способность синапсов передавать нервные импульсы непостоянна. Она повышается после активной деятельности синапса и снижается при отсутствии активности. Понижение функциональных возможностей синапсов (гипосинапсия) ведет к ухудшению проведения через них нервных импульсов, а их полное нарушение (асинапсия) вызывает окончательное разобщение нервных клеток. Механизмы взаимодействия нервных клеток.

  • Слайд 22

    Координация деятельности центральной нервной системы. Иррадиация и концентрация нервных процессов. Торможение в центральной нервной системе. Доминанта. Для деятельности центральной нервной системы характерна определенная упорядоченность и согласованность рефлекторных реакций, т. е. их координация. Взаимодействие двух нервных процессов - возбуждения и торможения, лежащих в основе всех сложных регуляторных функций организма, закономерности их одновременного протекания в различных нервный центрах, а также последовательная смена во времени определяют точность и своевременность ответных реакций организма на внешние и внутренние воздействия.

  • Слайд 23

    Проведение афферентной волны по рефлекторной дуге вызывает в ее нервных центрах состояние возбуждения или торможения. Эти процессы при определенных условиях могут охватывать и другие рефлекторные центры. Распространение процесса возбуждения на другие нервные центры называют иррадиацией. Она осуществляется благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг, так что при раздражении одного рецептора возбуждение в принципе может распространяться в центральной нервной системе в любом направлении и на любую нервную клетку. Иррадиация и концентрация нервных процессов.

  • Слайд 24

    Явление торможения в нервных центрах было впервые открыто И. М. Сеченовым в 1862 г. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга». Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга, И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивания лапки).Описанный опыт вошел в историю физиологии под названием «Сеченовского торможения». Тормозные процессы — необходимый компонент в координации нервной деятельности. Торможение в центральной нервной системе.

  • Слайд 25

    Во-первых, процесс торможения ограничивает иррадиацию возбуждения, чем способствует его концентрации в необходимых участках нервной системы. Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов, осуществляя координационную функцию. В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т. е. играет охранительную роль.

  • Слайд 26

    Активность нервных центров непостоянна, и преобладание активности одних из них над активностью других вызывает заметные перестройки в процессах координации рефлекторных реакций. В 1923 г. А. А. Ухтомский сформулировал принцип доминанты как рабочий принцип деятельности нервных центров. Термином доминанта был обозначен господствующий очаг возбуждения в центральной нервной системе, определяющий текущую деятельность организма. Доминанта.

  • Слайд 27

    Основные черты, доминанты следующие: повышенная возбудимость нервных центров, стойкость возбуждения во времени, способность к суммации посторонних раздражении и инерция доминанты. Доминирующий (господствующий) очаг может возникнуть лишь при определенном функциональном состоянии нервных центров. Одним из условий его образования является повышенный уровень возбудимости нервных клеток, который обусловливается различными гуморальными и нервными влияниями (длительными афферентными импульсациями, гормональными перестройками в организме, воздействиями фармакологических веществ, сознательным управлением нервной деятельностью у человека и пр.).

  • Слайд 28

    Установившаяся доминанта может быть длительным состоянием, которое определяет поведение организма на тот или иной срок. Способность стойко поддерживать возбуждение во времени — характерная черта доминанты. Однако далеко не всякий очаг возбуждения становится доминантным. Повышение возбудимости нервных клеток и их функционального значения определяется способностью суммировать возбуждение при поступлении любого случайного импульса. Как фактор поведения доминанта связана с высшей нервной деятельностью, с психологией человека. Доминанта является физиологической основой акта внимания. Она определяет характер восприятия раздражении из внешней среды, делая его односторонним, но зато более целеустремленным.

Посмотреть все слайды

Сообщить об ошибке