Презентация на тему "Очистка отходящих газов"

Презентация: Очистка отходящих газов
Включить эффекты
1 из 44
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для 9-11 класса на тему "Очистка отходящих газов" по Биологии. Состоит из 44 слайдов. Размер файла 0.11 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

Содержание

  • Презентация: Очистка отходящих газов
    Слайд 1

    Защита атмосферы от промышленных загрязнений

    Очистка отходящих газов pptcloud.ru

  • Слайд 2

    Загрязнения могут поступать:

    1. непрерывно 2. залпами 3. мгновенно С отходящими газами в атмосферу поступают: Твердые Жидкие (паро и газообразные) Смешанные А) органические Б) неорганические вещества

  • Слайд 3

    Отходящие газы – двухфазные аэродисперсные системы - аэрозоли

    Сплошная фаза – газы (воздух) Дисперсная фаза – твердые частицы или капельки жидкости: Пыли – твердые частицы 5-50 мкм Дымы – 0,1- 5 мкм Туманы – капельки жидкости 0,3-5 мкм

  • Слайд 4

    Аэрозоли делятся

    По организации контроля: Организованные (очищенные и неочищенные) Неорганизованные (неочищенные) из неплотностей, щелей По температуре: Нагретые (выше температуры окружающего воздуха) холодные

  • Слайд 5

    Очистка -

    Отделение от газа или превращение в безвредное состояние загрязняющего вещества, поступающего от промышленного источника Выбор метода зависит от дисперсного состава и свойств дисперсной фазы

  • Слайд 6

    Размер частиц (мкм)

    40-1000 пылеосоадительные камеры 20-1000 циклоны диаметром 1-2 м 5-100 циклоны диаметром 1 м 20-100 скубберы 0,9-100 тканевые фильтры 0,05-100 волокнистые фильтры 0,01- 10 электрофильтры

  • Слайд 7
  • Слайд 8

    1 блок – очистка от пылей

    Выбор устройства зависит от таких свойств как: Плотность частиц Дисперсность Адгезивные свойства (слипаемость) Абразивность Смачиваемость Электропроводность

  • Слайд 9

    Для очистки используются

    Инерционные пылеуловители Жалюзные пылеуловители Циклоны (наиболее распространены)

  • Слайд 10

    1.1. Достоинства циклонов

    Отсутствие движущихся частиц в аппарате Надежность работы вплоть до 500 гр. С Возможность улавливать абразивные частицы при условии внутреннего защитного покрытия циклона Улавливание пыли в сухом виде Успешная работа при высоком давлении газов Простота изготовления

  • Слайд 11

    недостатки

    Плохое улавливание частиц меньше 5 мкм Невозможность очистки от адгезивных частиц При увеличении потока нельзя увеличивать диаметр, надо создавать батарею циклонов

  • Слайд 12

    1.2. очистка газов на фильтрах

    Фильтрация через пористую перегородку, где пыль задерживается: Гибкие пористые перегородки Полужесткие (волокна, стружка, сетки) Жесткие (зернисттые, пористая керамика)

  • Слайд 13

    В процессе ионизации молекул газов электрическим разрядом происходит заряд содержащихся в них частиц. Ионы абсорбируются на поверхности пылинок, а затем под действием электрического поля они перемещаются к осадительным электродам и осаждаются 1.3. очистка в электрофильтрах

  • Слайд 14

    Улавливание туманов

    Туманы образуются вследствие термической конденсации паров или в результате химического взаимодействия веществ, находящихся в аэродинамической системе Т. образуются при производстве кислот, концентрировании кислот, солей, при испарении масел

  • Слайд 15

    Применяют волокнистые и сетчатые фильтры Мокрые электрофильтры На поверхности волокна происходит коалесценция уловленных частиц и образование пленки жидкости, которая движется внутри слоя волокон и затем распадается на отдельные капли, которые удаляются из фильтра

  • Слайд 16

    Высокая эффективность (в т.ч тонкодисперсные туманы) Надежность Простота монтажа и обслуживания Быстрое зарастание при высоких концентрациях кислот или при образовании нерастворимых солей (соли жесткости воды) + газы СО, СО2, SO2, HF

  • Слайд 17

    Любой из процессов может идти с рекуперацией

    Рекуперация пылей и возможные пути использования Использование в качестве целевых продуктов (пр-во сажи) Возврат в производство Переработка в другом производстве Утилизация в строительных целях Переработка с извлечением пенных компонентов В с\х

  • Слайд 18

    2. Физико-химические

    2.1. адсорбция – поглощение газа или жидкости поверхностным слоем тврдого тела или жидкости Могут использоваться для очистки газов с невысоким содержанием газообразных и парообразных примесей Но позволяют проводить очистку при повышенных температурах

  • Слайд 19

    2.1. адсорбция

    Целевой компонент, находящийся в подвергаемой очистке газовой фазе называют адсорбтивом Его же в адсорбированном состоянии – адсорбатом Поглотитель - сорбент

  • Слайд 20

    Сорбенты

    Пористые материалы, которые имеют большую поверхность удельную до нескольких сотен м куб./г Суммарный объем микропор в единице массы сорбента определяют скорость и интенсивность очистки – АДСОРБЦИОННУЮ СПОСОБНОСТЬ Процесс идет с выделением тепла М.б. природными или синтертическими

  • Слайд 21

    Поглотительная способность определяется

    Концентрацией адсорбата в массовой или объемной единице адсорбента ОПРЕДЕЛЯЮТСЯ Природой поверхности Характером пористости Температурой процесса Свойствами адсорбтива, его концентрацией

  • Слайд 22

    Сорбенты – 1. АКТИВНЫЕ УГЛИ

    ДОСТОИНСТВА Гидрофобность След. рекуперация легко Гранулы 1-6 мм Дешево Невысокая температура Стационарный слой Большой объем для свалки Пожароопасность (темп отходящих газов на газовых ТЭЦ 120-160 гр.С На мазутных – 200-250 гр.С

  • Слайд 23

    Сорбенты – 2. селикагели SiO2*nН2О – гидратированные аморфные кремнеземы, превращения происходят по механизму поликонденсации

    ДОСТОИНСТВА Образуют жесткий кремниево-кислородный каркас Мелкопрристые - для легкоконденсируемых паров и газов крупнопрристые - для паров органических соединений Дороже

  • Слайд 24

    Сорбенты – 3. алюмогели Al2O3*nН2О – получают прокаливанием Al(OH)3

    ДОСТОИНСТВА Гранулы 3-7 мм для полярных органических соединений и осушки газов Дороже

  • Слайд 25

    4. цеолиты алюмосиликаты, содержащие оксиды щелочных и щелочно-земельных металлов

    ДОСТОИНСТВА Хар-ся регулярной структурой пор, размеры соизмеримы с молекулой – молекулярные сита Получают искусственно или добывают из природных месторождений для полярных органических соединений и осушки газов С максимальной эффективностью адсорбируют H2S, CS2, CO2, NH3, ацетиленовые у/в, этан, этилен, пропилен Сохраняют активность при высоких температурой Возможно эффективно при извлечении кислых компонентов (SO2, NO2, галогенов)

  • Слайд 26

    Десорбция

    необходимость периодической регенерации – цикличность процессов Ее возможность + для метода

  • Слайд 27

    1. Термическая

    А. потоком водяного пара Б. горячего воздуха В. инертного газа Г. проводя нагрев через стенку 100-200 грС активных углей, селикагелей, алюмогелей 200-400 гр.С - цеолитов

  • Слайд 28

    2. Вытеснительная (холодная)

    Основана на различии сорбируемости вытесняемого вещества и вытесняющено (десорбента) Для десорбции органических веществ – СО2, аммиак, воду Особенно перспективно для цеолитов

  • Слайд 29

    3. Десорбция снижением давления

    Можно снизить давление Можно проводить адсорбцию при повышенном давлении, а потом довести до нормального РАЗРЕЖЕНИЕ

  • Слайд 30

    4. Вакуумная десорбция

    Высокие энергозатраты Необходимость обеспечения герметичности установок Принцип основан на разнице давления А и Д Основан на применении короткоцикловой безнагревной Д для осушки воздуха и др. газов Является необходимой ступенью, предшествующей их очистке от вредных примесей

  • Слайд 31

    Адсорбция NOx

    Он достаточно инертен, является несолеобразующим соединением Можно угли, но процесс идет с выделением тепла Хемосорбция исмп. разл. тверд. в-ва: Улавливание смесью торфа и извести Торф обработанный аммиаком, что способствует окислению нитритов до нитратов. В итоге готовое орг удобрение и Д. не нужна

  • Слайд 32

    От NOx

    Рециркуляция газов (в 2-3 раза можно сократить выброс) – газ подается в горелку в смеси со всем воздухом со скоростью равной скорости воздуха. Это хорошо при сжигании газа и мазута, для угля – меньше эффект. Используют на МоГЭС, но отключают, т.к. это снижает мощность Снижение избытка воздуха во всех видах топлива. Предел применимости в появлении продуктов неполного сгорания СО+увеличесние интенсивности шлакования поверхности нагрева+рост топочной коррозии

  • Слайд 33

    3. Двухступенчатое сжигание: Часть необходимого воздуха в топочные горелки Ост воздух подается через специальные сопла выше работающих горелок При сжигании газа это снижает в 2 раза выброс, мазута – на 30-40% В отечественной практике для мазута широко не используется

  • Слайд 34

    4. Рассредоточение зоны горения в объеме топки и повышение скорости охлаждения факела (больше число мелких горелок в несколько ярусов по высоте). При сжигании угля эффекта нет 5. Снижение подогрева воздуха для газа. Для мазута и угля плохо, т.к. они требуют больше тепла 6. Уменьшение нагрузки котлоагрегата – чрезвычайная мера в тяжелых метеоусловиях. При снижении нагрузки на 25% на газе выброс NOx снижается на 50%, на мазуте и угле на 20-30%

  • Слайд 35

    7. Рациональная организация факельного процесса горения для угля – эффект двухступенчатого горения в факеле, газы рециркуляции вводятся в рассечку между двумя потоками воздуха. Для мазута эффект в 2-3 раза, Для угля – 2 р. 8. Химические методы – присадки, которые приводят к разложению. Промышленные установки для очистки дымовых газов от NOx пока нигде в мире не применяются

  • Слайд 36

    Адсорбция SO2

    Почти невозможна, поэтому твердые хемосорбенты вводятся в пылевидной форме в топку или газоходы ТЭЦ (известняк, доломит) ПОЭТОМУ: Проще всего их удалять на НПЗ и использовать малосернистые мазуты Газификация сернистого мазута – предотвращение загрязнения Мокрая очистка (известковое молоко) Сухой известковый способ – пропустить через Са СО3 (30% эффективность очистки) Можно доломит, сланцы (50-60% эффективность очистки)

  • Слайд 37

    Адсорбция паров летучих растворителей

    Их рекуперация имеет как экол. Так и экономическое значение, т.к. потери с выбросами сост. 600-800 тыс. т /год Активные угли, т.к. гидрофобны Главное – непрерывность, поэтому мин. 2 рекуперационные колонны (обычно 3-6) В мировой практике 2 направления совершенствования: - аппаратурное оформление рекуперационных установок - углеродные поглотители паров летучих растворителей

  • Слайд 38

    2.2. конденсация

    Хорошо подходит для летучих растворителей Смесь паров растворителей с воздухом предварительно охлаждают в теплообменнике, а затем конденсируют Простота аппаратурного оформления Но – содержание паров растворителей в этих смесях превышают порог их взрываемости +высокие расходы холодильного агрегата и электроэнергии +низкий % конденсации паров (выход) растворителей (обычно 70-90%) Метод может быть рентабельным при концентрации растворителей более 100 г/куб.м

  • Слайд 39

    2.3. компримирование

    Тоже, что конденсация, но применительно к парам растворителей, находящихся под повышенным давлением. Более сложен в аппаратурном оформлении, т.к. необходим компримирующий агрегат + все те же недостатки, которые свойственны методу конденсации

  • Слайд 40

    3. Химические методы

    3.1. АБСОРБЦИЯ – в широком смысле поглощение одного вещества всем объемом другого вещества. А – жидкостью газа называется экстракцией

  • Слайд 41

    В качестве абсорбента м.б. вода

    1. SO2+H2O = H+ + HSO4- 2. Абсорбция сероводорода фосфатным методом раствором 40-50% фосфата калия K3PO4+H2S=KHS+K2HPO4 3. От NOx: Водой Перекисью водорода Растворами щелочей и солей

  • Слайд 42

    4. От фторсодержащих примесей водой H2O+2F=H3O+ + HF2- 5. От хлора растворами щелочей, в результате образуются соли.

  • Слайд 43

    3. Химические

    3.2. каталитические методы основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности катализаторов. Очистке подвергаются газы, не содержащие пыли и каталитических ядов. Чистят от NOx, SO2, углерода, орг. примесей

  • Слайд 44

    4. Термические методы

    От легко окисляемых, токсичных и дурно пахнущих примесей Основан на сжиганием горючих примесей в топках печей или факельных горелках Состав отходящих газов сложен и нужны многоступенчатые системы очистки Преимущества Недостатки - простота аппаратурного - доп. расход топлива оформления - необх доп адсорбции универсальность использования

Посмотреть все слайды

Сообщить об ошибке