Содержание
-
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
1. Виды и признаки колебаний 2. Параметры гармонических колебаний 3. Графики смещения скорости и ускорения 4. Основное уравнение динамики гармонических колебаний 5. Энергия гармонических колебаний 6. Гармонический осциллятор pptcloud.ru
-
Виды и признаки колебаний
В физике особенно выделяют колебания двух видов – механические и электромагнитные и их электромеханические комбинации, поскольку они чрезвычайно актуальны для жизнедеятельности человека. Так, механические колебания плотности воздуха воспринимаются нами как звук, а быстрые электромагнитные колебания – как свет. С помощью звука и света мы получаем основную часть информации об окружающем нас мире. Для колебаний характерно превращение одного вида энергии в другую – кинетической в потенциальную, магнитной в электрическую и т.д. Колебательным движением (или просто колебанием) называются процессы, отличающиеся той или иной степенью повторяемости во времени.
-
Три признака колебательного движения: повторяемость (периодичность) – движение по одной и той же траектории туда и обратно; ограниченность пределами крайних положений; действие силы, описываемой функцией
-
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени. Простейшим типом периодических колебаний являются, так называемые, гармонические колебания. Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, ), совершает гармонические колебания.
-
Саму такую систему часто называют гармоническим осциллятором. Рассмотрение гармонических колебаний важно по двум причинам: колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний.
-
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
Периодический процесс можно описать уравнением: . По определению, колебания называются гармоническими, если зависимость некоторой величины имеет вид или Здесь синус или косинус используются в зависимости от условия задачи, А и φ – параметры колебаний, которые мы рассмотрим ниже.
-
ПАРАМЕТРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ
Для изучения колебательного движения нам придется ввести несколько терминов – параметров колебательного движения. Расстояние груза от положения равновесия до точки, в которой находится груз, называют смещением x. Максимальное смещение – наибольшее расстояние от положения равновесия – называется амплитудой и обозначается, буквой A.
-
Выражение, являющееся аргументом синуса или косинуса в формуле , определяет смещение x в данный момент времени t и называется фазой колебания. При t=0 φ = φ0 , поэтому называется начальной фазой колебания. Фаза измеряется в радианах и определяет значение колеблющейся величины в данный момент времени. Т.к. синус и косинус изменяются в пределах от +1 до , то -1,то х может принимать значения от +А до –А.
-
Движение от некоторой начальной точки до возвращения в ту же точку называется полным колебанием. Частотаколебаний ν определяется, как число полных колебаний в 1 секунду. Частоту, как правило, измеряют в герцах (Гц): 1 Гц равен числу полных колебаний в одну секунду. Очевидно, что
-
Т – период колебаний – минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание ω – циклическая (круговая) частота – число полных колебаний за 2π секунд. Заметим, что фаза φ не влияет на форму кривой х(t), а влияет лишь на ее положение в некоторый произвольный момент времени t.
-
Колебания характеризуются не только смещением, но и скоростью и ускорением . Если смещение описывается уравнением то, по определению
-
Графики смещения скорости и ускорения
Уравнения колебаний запишем в следующем виде: Из этой системы уравнений можно сделать следующие выводы:
-
Графики смещения скорости и ускорения
Скорость колебаний тела максимальна и, по абсолютной величине, равна амплитуде скорости в момент прохождения через положение равновесия . При максимальном смещении скорость равна нулю; Ускорение равно нулю при прохождении телом положения равновесия и достигает наибольшего значения, равного амплитуде ускорения при наибольших смещениях. Ускорение всегда направленно к положению равновесия, поэтому, удаляясь от положения равновесия, тело двигается замедленно, приближаясь к нему – ускоренно. Ускорение всегда прямо пропорционально смещению, а его направление противоположно направлению смещения. Все эти выводы могут служить определением гармонического колебания.
-
Графики смещения, скорости и ускорения гармонических колебаний:
-
Основное уравнение динамики гармоническихколебаний
Второй закон Ньютона позволяет, в общем виде, записать связь между силой и ускорением, при прямолинейных гармонических колебаниях материальной точки (или тела) с массой m. Отсюда следует, что сила Fпропорциональна х и всегда направлена к положению равновесия (поэтому ее и называют возвращающей силой). Период и фаза силы совпадают с периодом и фазой ускорения.
-
Примером сил удовлетворяющих этому уравнению являются упругие силы. Силы же имеющие иную природу, но удовлетворяющие этому уравнению называются квазиупругими. Квазиупругая сила Подставляя Fxв основное уравнение получаем:
-
В случае прямолинейных колебаний вдоль оси х, проекция ускорения на эту ось Подставив выражения для aх и Fхво второй закон Ньютона, получим основное уравнение динамики гармонических колебаний, вызываемых упругими или квазиупругими силами: или
-
Решение этого уравнения всегда будет выражение вида т.е. смещение груза под действием упругой или квазиупругой силы является гармоническим колебанием, происходящим по синусоидальному закону.
-
Энергия гармонических колебаний
Вычислим энергию тела массой m, совершающего гармонические колебания с амплитудой А и круговой частотой ω. Потенциальная энергия телаU, смещенного на расстояние х от положения равновесия, измеряется той работой, которую произведет возвращающая сила ,перемещая тело в положение равновесия.
-
Или Кинетическая энергия Тогда
-
Или Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания. В случае свободных незатухающих колебаний полная энергия не зависит от времени, поэтому и амплитуда А – не зависит от времени.
-
-
Гармонические осцилляторы
Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, математический и физический маятники, а также колебательный контур (для малых токов и напряжений).
-
Пружинный маятник или Математический маятник( только для малых колебаний )
-
Физический маятник – это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С
-
При отклонении этого тела от положения равновесия на угол α, также возникает вращающий момент, стремящийся вернуть маятник в положение равновесия: где l – расстояние между точкой подвеса и центром масс маятника С. Обозначим через J – момент инерции маятника относительно точки подвеса O.
-
Тогда В случае малых колебаний Величину момента инерции J иногда бывает трудно вычислить.
-
Сопоставляя формулы для периода колебаний физического и математического маятников, можно обозначить: где – приведенная длина физического маятника – это длина такого математического маятника, период колебания которого совпадает с периодом колебаний данного физического маятника.
-
ВЛИЯНИЕ ВНЕШНИХ СИЛНА КОЛЕБАТЕЛЬНЫЕ ПРОЦЕССЫ
1. Свободные затухающие механические колебания 2. Коэффициент затухания и логарифмический декремент затухания 3. Вынужденные механические колебания 4. Автоколебания
-
Затухающие колебания
Все реальные колебания являются затухающими. Энергия механических колебаний постепенно расходуется на работу против сил трения и амплитуда колебаний постепенно уменьшается. Во многих случаях в первом приближении можно считать, что при небольших скоростях силы, вызывающие затухание колебаний, пропорциональны величине скорости (например, маятник).
-
Тогда сила трения (или сопротивления) Запишем второй закон Ньютона для затухающих прямолинейных колебаний вдоль оси x Или Введем обозначения
-
Затухающие колебания
Тогда однородное дифференциальное уравнение второго порядка запишется так: Решение этого уравнения имеет вид при А0 и φ0 – определяются из краевых условий (начальных и граничных) задачи. β и ω – из самого уравнения.
-
Найдем ω. Здесь оно уже не равно . Подставим решение дифференциального уравнения в само дифференциальное уравнение продифференцировав решение один и два раза по времени. Тогда имеем: или где ω0 – круговая частота собственных колебаний (без затухания); ω – круговая частота свободных затухающих колебаний.
-
Затухающие колебания представляют собой непериодические колебания, так как в них не повторяется, например, максимальное значение амплитуды. Поэтому называть ω – циклической (повторяющейся, круговой) частотой можно лишь условно. По этой же причине и называется условным периодом затухающих колебаний.
-
Коэффициент затухания и логарифмический декремент затухания
Найдем отношение значений амплитуды затухающих колебаний в моменты времени t и
-
Натуральный логарифм отношения амплитуд, следующих друг за другом через период Т, называется логарифмическим декрементом затухания. Выясним физический смысл χиβ. Обозначим через τ – время, в течение которого амплитуда А уменьшается в e раз. откуда
-
Следовательно, коэффициент затухания β – есть физическая величина, обратная времени, в течение которого амплитуда уменьшается в е раз, τ– время релаксации. Пусть N число колебаний, после которых амплитуда уменьшается в e – раз. Тогда
-
Следовательно, логарифмический декремент затухания χ есть физическая величина, обратная числу колебаний, по истечению которых амплитуда А уменьшается в e раз. Если χ =0,01 то N =100. При большом коэффициенте затухания происходит не только быстрое уменьшение амплитуды, но и заметно увеличивается период колебаний. Когда сопротивление становится равным критическому , то процесс будет апериодическим .
-
-
Вынужденные механические колебания
Рассмотрим систему, на которую кроме упругой силы (– kx) и сил сопротивления (– rυ) действует добавочная периодическаясила F – вынуждающая сила. Для колебаний вдоль оси x запишем основное уравнение колебательного процесса, или где fх = Fх/m – вынуждающая сила, изменяющаяся по гармоническому закону:
-
Через некоторое время после начала действия вынуждающей силы колебания системы будут совершаться с частотой вынуждающей силы, ω. Уравнение установившихся вынужденных колебаний Наша задача найти амплитуду А и разность фаз φ между смещением вынужденных колебаний и вынуждающей силой.
-
Обратим внимание на то, что скорость на π/2 опережает смещение, а ускорение на π/2 опережает скорость. Преобразуем и через косинус:
-
Обозначим – угол между смещением и вынуждающей силой. Подставим все эти выражения в дифференциальное уравнение для вынужденных колебаний и получаем в итоге: или
-
Каждое слагаемое последнего уравнения можно представить в виде соответствующего вращающегося вектора амплитуды: амплитуда ускорения, амплитуда скорости, амплитуда смещения, амплитуда вынуждающей силы, причем
-
Вектор амплитуды силы найдем по правилу сложения векторов:
-
Из рисунка видно, что Найдем амплитуду А: Таким образом, и .
-
При постоянных F0,m и β – амплитуда зависит только от соотношения круговых частот вынуждающей силы ω и свободных незатухающих колебаний системы ω0. Начальную фазу вынужденных колебаний можно найти из выражения:
-
Из рисунка видно, что сила опережает смещение на угол, который определяется из выражения: Проанализируем выражение для амплитуды. (частота вынуждающей силы равна нулю), тогда Статическая амплитуда, колебания не совершаются.
-
2. Затухания нет С увеличением ω (но при ), амплитуда растет и при , амплитуда резко возрастает ( ). Это явление называется – резонанс. При дальнейшем увеличении ( ) амплитуда опять уменьшается.
-
Если амплитуда будет максимальна при минимальном значении знаменателя. Для нахождения точки перегиба возьмем первую производную по ω от подкоренного выражения и приравняем ее к нулю. Тогда резонансная частота будет определяться выражением:
-
ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ
1. Квазистационарные токи 2. Свободные колебания в электрическом контуре без активного сопротивления 3. Свободные затухающие электрические колебания 4. Вынужденные электрические колебания 5. Мощность, выделяемая в цепи переменного тока
-
Квазистационарные токи
При рассмотрении электрических колебаний приходится иметь дело с токами, изменяющимися во времени. Закон Ома и вытекающие из него правила Кирхгофа, были установлены для постоянного тока. Однако, они остаются справедливыми и для мгновенных значений изменяющихся тока и напряжения, если их изменения происходят не слишком быстро. Электромагнитные сигналы распространяются по цепи со скоростью света с.
-
Пусть l– длина электрической цепи. Тогда время распространения сигнала в данной цепи Если (T – период колебаний электрического тока), то такие токи называются квазистационарными. При этом условии мгновенное значение силы тока во всех участках цепи будет постоянным. Для частоты условие квазистационарности выполняется при длине цепи ~ 100 км.
-
Свободные колебания в электрическом контуре без активного сопротивления
В цепи, содержащей индуктивность L и ёмкость С могут возникать электрические колебания. Такая цепь называется колебательным контуром
-
Поскольку активное сопротивление контура , полная энергия остаётся постоянной. Если энергия конденсатора равна нулю, то энергия магнитного поля максимальна и наоборот. Рассмотрим процессы, происходящие в колебательном контуре в сравнении с колебаниями маятника .
-
-
Из сопоставления электрических и механических колебаний следует, что, энергия электрического поля аналогична потенциальной энергии, а энергия магнитного поля аналогична кинетической энергии; L играет роль массы т, а 1/С – роль коэффициента жесткости k. Наконец заряду q соответствует смещение маятника из положения равновесия х, силе тока I – скорость υ, а напряжению U – ускорение а.
-
Эта аналогия сохраняется и в математических уравнениях. В соответствии с законом Кирхгофа (и законом сохранения энергии), можно записать
-
Введем обозначение: – собственная частота контура, отсюда получим основное уравнение колебаний в контуре: Решением этого уравнения является выражение вида:
-
Таким образом, заряд на обкладке конденсатора изменяется по гармоническому закону с собственной частотой контура – ω0. Для периода колебаний справедлива, так называемая формула Томсона:
-
Продифференцируем по времени выражение для заряда и получим выражение для тока: Напряжение на конденсаторе отличается от заряда множителем 1/С:
-
Максимальные значения
-
Свободные затухающие электрические колебания
Всякий реальный контур обладает активным сопротивлением. Энергия, запасенная в контуре, постепенно расходуется в этом сопротивлении на нагревание, вследствие чего колебания затухают.
-
По второму закону Кирхгофа Обозначив – коэффициент затухания; получим уравнение затухающих колебаний в контуре с R,L и С:
-
При т.е. , решение этого уравнения имеет вид: Затухание принято характеризовать логарифмическим декрементом затухания
-
Колебательный контур часто характеризуют добротностью Q, которая определяется как величина, обратно пропорциональная χ: Добротность определяется и по другому: где W– энергия контура в данный момент, ΔW – убыль энергии за один период, следующий за этим моментом. , ,
-
При т.е. при происходит апериодический разряд Сопротивление контура, при котором колебательный процесс переходит в апериодический, называется критическим сопротивлением .
-
Вынужденные электрические колебания. Резонанс
К контуру, изображенному на рисунке подадим переменное напряжение U
-
Это уравнениевынужденных электрических колебаний, которое совпадает с аналогичным уравнением механических колебаний. Его решение имеет вид: Величина называется полным сопротивлением контура
-
При последовательном соединении R, L, С, в контуре когда – наблюдается резонанс. При этом угол сдвига фаз между током и напряжением обращается в нуль (φ = 0). Резонансная частота при напряжении на конденсаторе Uс равна
-
Тогда , а Uс и UL одинаковы по амплитуде и противоположны по фазе. Такой вид резонанса называется резонансом напряжения или последовательным резонансом. Резонансные кривые для напряжения U изображены на рисунке. Они сходны с резонансными кривыми для ускорения aпри механических колебаниях.
-
-
В цепях переменного тока, содержащих параллельно включенные ёмкость и индуктивность, наблюдается другой тип резонанса.
-
-
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.